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Abstract—Motivated by state-of-the-art performances across a
wide variety of areas, over the last few years Machine Learning
has drawn a significant amount of attention from the healthcare
domain. Despite their potential in enabling personalized medicine
applications, the adoption of Deep Learning based solutions in
clinical workflows has been hindered in many cases by the strict
regulations concerning the privacy of patient health data. We
propose a solution that relies on Fully Homomorphic Encryption,
particularly on the MORE scheme, as a mechanism for enabling
computations on sensitive health data, without revealing the
underlying data. The chosen variant of the encryption scheme
allows for the computations in the Neural Network model to be
directly performed on floating point numbers, while incurring a
reasonably small computational overhead. For feasibility evalu-
ation, we demonstrate on the MNIST digit recognition task that
Deep Learning can be performed on encrypted data without
compromising the accuracy. We then address a more complex
task by training a model on encrypted data to classify X-ray
coronary angiography views. These results underline the potential
of the proposed approach to outperform current solutions by
delivering comparable results to the unencrypted Deep Learning
based solutions, in a reasonable amount of time. Lastly, the
security aspects of the encryption scheme are analyzed, and we
show that, even though the chosen encryption scheme favors
performance and utility at the cost of weaker security, it can still
be used in certain practical applications.

Index Terms—Homomorphic encryption, Deep Learning, med-
ical data, privacy

I. INTRODUCTION

In recent years machine learning algorithms, and specifically
Deep Neural Networks, have shown promising results in deliv-
ering personalized medicine, allowing for tailored diagnosis,
treatment planning and disease prevention [1]. Since Deep
Neural Networks have the ability to learn from past observa-
tions, they represent an attractive solution for integrating the
knowledge and experience of medical experts into Computer-
aided Detection (CADe) solutions.

Machine learning relies extensively on existing and future
patient data to deliver accurate and reliable results [2]. How-
ever, among all types of data associated with an individual,
medical data has some of the highest privacy requirements.
Thus, as access to sensitive plaintext data is required in deep
learning based applications, privacy and security concerns have
been raised [3]. Moreover, the currently adopted regulations
towards confidentiality guarantees for personal data manipula-

Fig. 1. Workflow of a privacy-preserving deep learning based application
relying on homomorphic encryption.

tion (e.g. GDPR in EU, HIPAA in USA) urges for the adoption
of more effective privacy-preserving techniques.

Typically, to export sensitive data without compromising
privacy, proper anonymization has to be performed. Thus,
some of the data properties are modified, leading to a trade-off
between privacy and utility. To address this limitation, herein
we rely on a specific form of encryption, called homomorphic
encryption, which represents a promising solution for guaran-
teeing privacy while still maintaining full utility. Specifically,
the chosen homomorphic encryption scheme (MORE) [4]
enables a limited set of operations to be performed directly on
encrypted data, without having to reveal the underlying data or
the encryption key. This ensures that both data and predictions
remain private and data is analyzed in its encrypted from.

This property is particularly useful in the context of deep
learning solutions. As outlined in Figure 1, privacy is pre-
served at three levels: (i) during training, when the external
party (e.g. a cloud or processor) processes directly ciphertexts,
(ii) during inference, when the patient’s data remains confi-
dential: algorithm receives as input ciphertexts and outputs
ciphertexts, which are revealed only on the client side after
performing the decryption, and (iii) the external party’s deep
learning model remains confidential. Consequently, the secure
processing of medical data is performed in such a way that
the external party cannot derive knowledge from the data, and
the user is unable to obtain information regarding the machine
learning model.

Driven by the difficulties that arise in practice when em-
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ploying deep learning over encrypted data and also by the
inefficiency of current solutions, herein we propose a method
that increases the efficiency of the encrypted models in real-
world applications by enabling: (i) computations over rational
numbers, (ii) faster operations and, (iii) results comparable
to those obtained with the unencrypted model. We assess
the feasibility of the proposed solution for delivering reliable
results, and show that performance is not lost when deep
neural networks operate on data encrypted using the MORE
homomorphic encryption scheme. We evaluate the privacy-
preserving deep learning algorithms on the classic benchmark-
ing application of digit classification, and on a personalized
medicine application.

II. RELATED WORK

Recent advances in homomorphic encryption have lead
to several encryption schemes, with different properties and
constraints. The most notable drawback of the majority of
fully homomorphic encryption (FHE) schemes is that each
operation adds noise to the underlying message, therefore lim-
iting the overall number of operations that can be performed
without losing too much accuracy. Furthermore, to the best
of our knowledge, there is no currently available partially
or fully homomorphic encryption scheme that can process
rational numbers (only integer numbers are supported). As
a consequence, a variant of a matrix-based method, called
MORE (Matrix Operation for Randomization or Encryption)
[4] was adapted in the current work. Compared to currently
studied schemes, in the context of privacy-preserving networks
[5], [6], [7], MORE is noise free (unlimited number of
operations can be performed on ciphertext data) and non-
deterministic (multiple encryptions of the same message and
with the same key result in different ciphertexts). Moreover,
both division and multiplication operations can be performed
over encrypted data.

While fully homomorphic encryption seems to offer a high
level solution for privacy-preserving computations with deep
learning models, there are still important practical challenges
that urge for stronger security, faster running time, and im-
proved generalization performance [8].

To empower privacy-preserving computations in the context
of deep learning, it is crucial for the encryption scheme to be
applicable to rational numbers. Previously reported approaches
for handling this aspect rely on the encoding of rational
numbers as integers or as a sequence of integers [9]. Such
an approach has limited usability since it does not allow for
any operation to be performed on the encoded form. Moreover,
adopting an encoding strategy as a way of enabling computa-
tions to be performed on real-data introduces not only a clear
limitation in its utility but also directly affects the outcome
of the computations. To address this limitation, the MORE
encryption scheme was adapted to directly support floating
point arithmetic. A more detailed description is provided in
section III-A.

III. MATRIX BASED DATA RANDOMIZATION

With Gentry’s first introduction of a fully homomorphic
encryption schemes [10], numerous variations of the original
strategy were proposed in literature [11]. While most of the
schemes were shown to be secure, they suffer from very poor
performance, being several orders of magnitude slower than
the plaintext computations. Alternatively to the original fully
homomorphic encryption schemes, some simpler methods
which are based on linear transformations emerged. Although
criticized due to weaker security [12], [13], this class of
methods appears to be currently the only practical approach
for performing privacy-preserving computations in real-world
applications.

Herein we have employed a variant of the MORE encryption
scheme. The MORE scheme relies on matrix algebra and can
be used to encrypt a numerical value as a matrix. Therefore,
operations performed on encrypted values will turn into matrix
operations, e.g. addition of unencrypted scalars will result in
addition of encrypted matrices. The MORE encryption scheme
is defined as follows. It can be directly generalized to n by n
matrices, however, for simplicity, herein we present only the
2 by 2 setup:

1) Let m be the scalar value to be encrypted
2) Let S be a 2 by 2 invertible matrix, representing the

encryption and decryption key
3) m is mapped to a 2 by 2 matrix M as follows: M =(

m 0
0 r

)
where r is a random parameter

4) Encryption: C = SMS−1, C is the encrypted matrix
5) Decryption M = S−1MS, the element on the first row

and column represent the plaintext value
The MORE scheme is fully homomorphic with respect

to algebraic operations, i.e. given two encrypted matrices
C1 = SM1S

−1 and C2 = SM2S
−1, for multiplication

C1C2 = SM1S
−1SM2S

−1 = SM1M2S
−1, which is the

encryption of the multiplication M1M2, and for addition
M1 + M2 = SM1S

−1 + SM2S
−1 = S(M1 + M2)S

−1.
Similarly, this applies also for subtraction and division, and
even for operations involving unencrypted scalars.

A. Encryption of rational numbers

The original MORE scheme, as described by Kipnis et al.
[4], applies the encryption to positive integer numbers modulo
N , and all the operations are performed modulo N . This
is a typical characteristic of fully homomorphic or partially
homomorphic encryption schemes. Typical approaches for
extending the methodology to rational numbers consist in
employing an encoding operation. More specifically rational
numbers are first encoded as integers, or as a sequence of
integer numbers, and then the encryption is applied on the
resulting encoded form. In essence, this is a straightforward
problem but, no solution has been found to date in the
context of homomorphic encryption. One approach consists in
encoding rational numbers as continued fractions [9], however
it is difficult to perform operations on numbers represented
under this form. Another approach consists in turning rational
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numbers into an integer by multiplying with a large scale
factor. Unfortunately this approach will not allow for divisions
as it will cause the large scale factor to be reduced.

One of the most important advantages of the MORE en-
cryption scheme is that it can also be directly applied on
rational numbers without the need of an encoding operation.
The drawback is that the method becomes vulnerable to known
ciphertext attacks, as described in Section V-C.

B. Performing operations over encrypted data

It was shown previously that the MORE method is fully
homomorphic with respect to algebraic operations. In real
world applications, a broader spectrum of operations need to
be performed, e.g. non-linear (exponential, logarithmic, square
root, etc), comparison operations, etc. Typical approaches for
performing non-linear operations consist in approximating the
given functions as finite polynomial series (e.g. truncated Tay-
lor series), therefore relying only on algebraic operations. The
MORE scheme allows for a simple approach for performing
such operations.

Knowing that operations performed on encrypted values
turn into matrix operations, an intuitive approach is to compute
most of the non-linear functions used in neural networks as
matrix functions. However, a second approach can also be
derived using a property of the MORE scheme: the secret
message will always be one of the eigenvalues of the en-
crypted matrix, e.g. for the 2x2 case, the encrypted matrix
C will have two eigenvalues: m and r corresponding to the
message and the random secret. If the random secret r is
chosen to be statistically indistinguishable from the message,
it is impossible to separate the two without knowing the
decryption matrix S. Therefore, given an encrypted matrix
C, and knowing that m is one of the eigenvalues of C,
one can perform eigen decomposition, and then evaluate the
given non-linear function directly on the eigenvalues of C.
More specifically, given the eigen decomposition V LV −1

where V is the eigenvector matrix, and L is the diagonal
matrix containing the eigenvalues, one can evaluate any unary
function by performing the evaluation separately for each
eigenvalue L1, L2, . . . , Ln and then reconstructing the new
encrypted matrix as Cf = V f(L)V −1. This approach can
even be used for comparing an encrypted matrix C with a plain
scalar s. Non-linear binary operations involving two encrypted
values cannot be performed, but these types of operations can
be avoided in deep learning based applications.

IV. DEEP NEURAL NETWORKS OVER ENCRYPTED DATA

In this section we evaluate the proposed encryption scheme
in two types of deep learning applications: binary and multi-
class classification. We first address a well known benchmark-
ing application (digit classification), and then focus on training
a neural network model on encrypted data to determine coro-
nary angiography views. Experiments demonstrate that we can
ensure data security and, at the same time, efficiently perform
deep learning based data analysis.

A. MNIST: a typical dataset for neural networks

The MNIST (Modified National Institute of Standards and
Technology database) dataset [14] contains images repre-
senting handwritten digits, and is ly used as reference for
benchmarking image classification algorithms. The training
dataset consists of 60,000 grayscale images, of relatively small
dimension, 28x28, each image being labeled with the digit it
depicts.

To address the challenge of privacy-preserving computations
and evaluate the use of deep neural network models over
encrypted data, the focus lies on solving the classification
problem using a convolutional neural network (CNN) em-
ployed on encrypted input-output value pairs. Therefore, with a
message m ∈ R encoded as a matrix M ∈ R2x2, for a training
example, both the input image and the associated label vector
are now represented as ciphertexts in the R28x28x2x2, and
R10x2x2 domains. By leveraging the homomorphic property
of the scheme, and with the direct support for floating-point
arithmetic, training can be performed in a straightforward way.

The trained network has 6 layers, organized as follows:
conv-pool-conv-pool-fc-fc. The first convolutional layer has
8 filters, the second one 16 filters, and both layers handle
kernels of size 3x3. The pooling layer downsamples the images
by a factor of two through averaging. The last two fully
connected layers cover 100 and, respectively 10 nodes and
all the activation functions employed in the network, except
for the last layer, are sigmoid functions. The network was
trained using stochastic gradient descent (SGD) to minimize a
cross entropy loss between encrypted targets and encrypted
predictions. A learning rate of 0.01 was considered, and
training was performed in batches of 32 images for a number
of 100 epochs. This network leads to an accuracy of 98.3%
on the test dataset.

B. View classification in X-ray coronary angiographies

Invasive X-ray coronary angiography (ICA) is a diagnostic
imaging procedure that provides important information on the
structure and function of the heart, and represents the gold
standard in Coronary Artery Disease (CAD) imaging [15].
During a coronary angiogram, radio opaque dye is injected
into the coronary arteries and an X-ray scanner rapidly takes
a series of images, offering a detailed overview of the coronary
arteries. ICA enables the assessment of the anatomical severity
of coronary stenoses either visually or by computer-assisted
quantitative coronary angiography (QCA) [16].

In view of the limitations of the pure anatomical evaluation
of CAD, the functional index of Fractional Flow Reserve
(FFR) has been introduced as an alternative [17], and recent
technological advances also allow for image-based functional
assessment of coronary stenoses based on ICA [18], [19],
[20]. Coronary angiographies are recorded separately and
sequentially for the right coronary artery (RCA) and the left
coronary artery (LCA) (Figure 2).

An important research area in CAD is the fully automated
post-processing of coronary angiographies [21], having as
objectives:
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• Anatomical assessment: automatically determining the
anatomical severity of stenoses.

• Non-invasive functional assessment: automatically com-
puting functional diagnostic indices. [19], [20].

• Reporting: composing medical reports automatically
based on the findings in the coronary angiographies.

In this and other clinical settings based on the use of
ICA, automatic LCA / RCA view classification represents an
important pre-processing step. In the following section we
describe our approach for automatic coronary angiography
view classification. We considered a dataset composed from
3378 coronary angiographies, which were manually annotated
as displaying the LCA or the RCA. For each angiography
we extracted automatically one frame, in which the arteries
were well visible. The dataset was split into 1996 samples for
training and 680 for validation, while 702 images were kept for
the final testing of the trained model (splitting was performed
at patient level, i.e. ensuring that all coronary angiographies
of a patient are put in the same dataset - train, validation or
test). All 3 datasets were balanced, with a 1:1 prevalence for
LCA and RCA cases.

Moreover, to limit overfitting, aside from the regulariza-
tion added into the network we also performed an offline
augmentation, increasing the size of the training dataset by a
factor of 4. As augmentation strategies we adopted transforma-
tions involving rotating the images by ±10 degrees, shifting
and zooming. For runtime efficiency, we down sampled the
coronary angiography images by a factor of 2, resulting
in a 256x256 pixel resolution. We have conducted multiple
experiments and concluded that for coronary angiography view
classification, images having the original 512x512 resolution
do not improve the classification accuracy.

Since we are dealing with sensitive data, we focused on
training the CNN network on encrypted data. We chose to
encrypt only the input data, i.e. the coronary angiography
images, and leave the target, i.e. binary label 0 or 1, as
plaintext to show that training can as well be performed
if labels are kept unencrypted. Note that training can be
performed by also encrypting the target, as shown in the multi-
class classification problem on the MNIST dataset.

For classifying X-ray coronary angiographies we adopted
the following topology of the CNN network:

• Convolutional layer (4 filters of size 3x3, stride of 1x1).
• Sigmoid activation layer.
• Average pooling layer (stride of 2x2).
• Convolutional layer (8 filters of size 3x3, stride of 1x1).
• Tanh activation layer.
• Average pooling layer (stride of 2x2).
• Convolutional layer (16 filters of size 3x3, stride of 1x1).
• Tanh activation layer.
• Average pooling layer (stride of 2x2).
• Convolutional layer (32 filters of size 3x3, stride of 1x1).
• Tanh activation layer.
• Average pooling layer (stride of 2x2).
• Fully connected layer (64 units) and Tanh activation

function.

Fig. 2. (a) Right coronary artery, (b) Left coronary artery.

• Dropout layer (dropout rate set to 25%).
• Fully connected layer (1 unit) and Sigmoid activation

function.
We have set the learning rate to 0.01 and then trained

the network on mini-batches of 16 images, over 100 training
epochs, to solve a binary classification problem which mini-
mizes a cross entropy loss. Once the training is finalized, the
encrypted form of the model can be employed to predict new
encrypted instances, where angiographic images are encrypted
with the same key as the ones used during the training phase.

V. RESULTS

A. Performance

A first goal was to verify the correctness of the computa-
tions. Hence, in the following we present results obtained by
running the algorithms with unencrypted data (plaintext) and
encrypted data (ciphertext). Note that for consistency, and for
enabling a fair comparison, the same hyper-parameters and
random initializations were adopted.

A common question which is raised while training neural
networks is when to stop the training to achieve the optimal
performance. While an insufficient training may result in non-
optimal results by underfitting the data, a too long training
phase may lead to overfitting, which again can result in poor
performance on the unseen dataset. A typical strategy is to
closely monitoring both the training and the validation losses
and to stop the training when the first trend of overfitting
is observed. Alternatively, the number of epochs may be set
to an arbitrary large number and the training is stopped if
the validation loss does not improve for a certain number of
epochs. While both strategies are straightforward to implement
during training on plaintext data, they becomes impractical
when dealing with ciphertext data. In the latter case the
loss becomes encrypted, and if two encrypted numbers are
compared, the result is also a ciphertext, which cannot be
used inside a conditional statement. The inconvenience of not
seeing the actual loss value forces the training to take place
for a predefined number of epochs.

As the overall goal of the study is to assess the feasibility of
the deep neural network to operate directly on ciphertext data,
i.e. showing that the performance does not drop compared
to the plaintext setting, we have chosen an arbitrarily large
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Fig. 3. Accuracy evolution for the network trained on ciphertext data.

number of epochs to conduct the experiments and report the
performance.

All experiments indicated that the training progresses simi-
larly in both the encrypted and the unencrypted use cases, as
is outlined in the following.

1) MNIST classification: The most important metric is
the absolute accuracy of the classification models, i.e. the
percentage of correctly labeled digit images. To compute
the metric, the outputs of the model outputting ciphertext
results are decrypted with the symmetric key. The unencrypted
network achieved a classification accuracy of 98.3% on the
testing dataset, which is preserved by the encrypted network.

While 98.3% is a marginally acceptable accuracy on the
MNIST dataset, it is still relatively far away from 99.77%,
declared as the state of the art accuracy for the digit recog-
nition task. However, this is not surprising, as the network
proposed to solve the classification task was chosen not with
the intention of improving recognition accuracy, but rather
to validate privacy preserving computations in the context of
neural network models. The accuracy of any predictive model
generally improves with more favorable activation functions
and optimization algorithms.

2) X-ray coronary angiographies classification: We vali-
dated the encrypted model at two levels: (i) at training level,
in terms of its capability of preserving the correctness of
the computations, and (ii) at inference level, where the focus
lies on the overall capability to classify the X-ray coronary
angiographies.

To show the ability of the network to learn from ciphertext
data, the training and validation accuracy, as resulted after
decryption, are depicted in Figure 3.

Regarding the classification accuracy, the CNN network
trained on ciphertext data achieves 96.2% of correctly clas-
sified samples, when evaluated on unseen encrypted angiogra-
phies. When compared to the unencrypted model, accuracy
was identical.

TABLE I
RUNTIME ANALYSIS OF THE ENCRYPTED AND PLAINTEXT CNNS FOR

MNIST DIGIT RECOGNITION.

Operation
Runtime [s]
on cipertext
data

Runtime [s]
on plaintext
data

Encrypted -
Unencrypted
ratio

Data encryption
and key generation 2.44±0.016 - -

Training
(1 epoch) 444.59±8.53 12.98±1.17 34.25

Data encryption 0.39±0.009 - -
Inference
(10K images) 20.42±0.32 0.54±0.08 37.81

Data decryption 0.001±0.0005 - -

TABLE II
RUNTIME ANALYSIS OF THE ENCRYPTED AND PLAINTEXT CNNS FOR

ANGIOGRAPHIC VIEW CLASSIFICATION.

Pearson
correlation

Runtime [s]
on cipertext
data

Runtime [s]
on plaintext
data

Encrypted -
Unencrypted
ratio

Training
(1 epoch) 1075.47±45.54 34.48±1.12 31.19

Inference
(702 images) 26.36±1.98 0.8±0.06 32.95

B. Execution time

All runtimes reported in the current section were measured
on a machine equipped with an Intel(R) Xeon(R) CPU running
at 2.10GHz. The deep learning library which integrates the
MORE encryption scheme was written in C++. The library is
still under active development, with minimal multi-threading
support.

A detailed comparison of the runtime for each of the
applications is given in Table I and Table II. Note that all
results were reported under the assumption of employing data
parallelism (8 threads) at training and inference level.

C. Security concerns

While the MORE design is simple and clean, with homo-
morphic properties tailored to privacy-preserving deep neural
network, the linear transformations used as the only compo-
nent of the encryption algorithm limits the security. As stated
in [13], [12], the scheme is vulnerable to the chosen plaintext
attacks. In particular, if an attacker has access to a large enough
number of pairs of encrypted and unencrypted messages, it is
possible to compute the secret key by formulating and solving
a numerical optimization problem, i.e. by finding the best fit
of a matrix S such that (S−1CiS)1,1 = mi for each known
pair (Ci,mi). This key search attack cannot be applied on the
original MORE scheme (on integers modulo N ) because the
modulo operation is nonlinear.

Although this methodology has weaker security than other
homomorphic encryption schemes, it can still be used in
applications where the key is never disclosed, e.g. a hospital
encrypts the data and then uploads encrypted data to an
external computing service. Similarly, it can be employed in
a case where encryption is performed per patient, e.g. an
application where one can upload personal medical data to
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a service that provides a personalized risk factor or other
relevant health indices.

VI. DISCUSSION AND CONCLUSIONS

In the past few years, the raised concern for protecting
the privacy of sensitive medical data while still encouraging
the delivery of personalized medicine solutions, increased
the focus on enabling privacy-preserving computations inside
Deep Neural Networks.

The proposed solution aims at ensuring the privacy by
incorporating a data encryption mechanism and delivering
reliable results, to be used in clinical workflows. We have
showcased the applicability of incorporating the MORE en-
cryption scheme into Deep Learning models by tackling two
different problems: digit recognition and coronary angiography
view classification. We have addressed both the training and
the inference phase, and showed that both can be performed
on encrypted data. We demonstrated that the accuracy of the
encrypted model is statistically not discernable from the unen-
crypted model, and that, by following the proposed strategy,
computations over ciphertext data are only slightly more costly
than the ones performed on plaintext data.

In conclusion, we showed that by employing the MORE
fully homomorphic encryption scheme as a privacy preserving
mechanism, we enabled the application of Deep Learning
models on encrypted data without compromising the accuracy
at all. Although the runtime increased by more than one order
of magnitude, the encrypted models are still outputting results
in a reasonable amount of time. With its direct support for
computations over rational numbers, and the ability to perform
operations without adding noise, the scheme becomes eligible
for more complex models from the realm of Deep Learning.

Although the MORE encryption scheme is an attractive
choice due to its unbiased advantages in terms of performance
and usability, we acknowledge that it offers a lower security
compared to standard schemes, and it is by no means a defini-
tive option for problems requiring homomorphic encryption.
Improving the security while maintaining the performance and
potential to be used in real-world applications represents our
main future work direction.
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