

"MY HEALTH, MY DATA"

BLOCKCHAIN

WALLET

Local repositories

Clinical datasets

WALLET

Personal storage clouds

Medical records,

apps, loTs

BLOCKCHAIN

WALLET

Medical knowledge discovery

Drugs and treatments

AI, biomedical devices

MyHealthMyData (MHMD) is a H2020 Research and Innovation Action (2016-2019) developing a blockchain platform for sharing and exchanging HEALTHCARE DATA for medical care, research and innovation

ENCRYPTION

SOLUTIONS

OBJECTIVES and INNOVATIONS

BLOCKCHAIN and SMART CONTRACTS

A private/permissioned blockchain architecture that **manages and authorizes the access and exchange of data** according to user-defined conditions

PERSONAL DATA ACCOUNTS and DYNAMIC CONSENT

Personal storage clouds to **aggregate personal data from disparate sources** (medical records, mobile apps, IoTs), access it for personal use or share it under conditions defined by a dynamic consent module implemented through a dedicated smart contract

DATA PRIVACY AND SECURITY TECHNOLOGIES

- PRIVACY-PRESERVING DATA PUBLISHING (Data anonymisation): exposing de-identified data
- SYNTHETIC DATA GENERATION: generation of synthetic datasets through machine learning
- SECURE COMPUTATION (Privacy-preserving data flow exécution): calculating algorithms on encrypted data

BIG DATA ANALYTICS

Exploring the feasibility on de-identified and encrypted data of

- 1. DeepExplorer/DeepReasoner: deep learning for AI configuration, data exploration, case-based reasoning, patient stratification
- 2. Personalized physiological models for clinical decision support (blood circulation model)
- 3. Machine learning algorithms for knowledge discovery
- 4. Models for estimating the value of data

CITIZENS' EMPOWERMENT

DATA PRIVACY

AND SECURITY

DATA VALUE

ENHANCEMENT

DATA PRIVACY AND SECURITY TECHNOLOGIES

esearch & I

amnesia

PRIVACY-PRESERVING DATA PUBLISHING (Data anonymisation) Expose de-identified data

- removing direct *identifiers* (i.e., name and surname, social security number)
- transforming quasi identifiers through generalisation (aggregation) (e.g., age, date/place of birth, zipcode)
- randomisation (statistical noise addiction, permutation)

k anan	umination	lannara	lination
к-апоп	vinisauon	iuenera	Isauom
		190100	

ID	ACE	ZIRCODE	DIAGNOSIS	ID	ACE	ZIRCODE	DIAGNOSIS
1	28	13053	Heart Disease	1	[20-30]	130**	Heart Disease
2	29	13068	Heart Disease	2	[20-30]	130**	Heart Disease
3	21	13068	Viral Infection	3	[20-30]	130**	Viral Infection
4	23	13053	Viral Infection	4	[20-30]	130**	Viral Infection
5	50	14853	Cancer	> 5	[40-60]	148**	Cancer
6	55	14853	Heart Disease	6	[40-60]	148**	Heart Disease
7	47	14850	Viral Infection	\rangle_{7}	[40-60]	148**	Viral Infection
8	49	14850	Viral Infection	8	[40-60]	148**	Viral Infection
9	31	13053	Cancer	9	[30-40]	13***	Cancer
10	37	13053	Cancer	10	[30-40]	13***	Cancer
11	36	13222	Cancer	11	[30-40]	13***	Cancer
12	35	13068	Cancer	12	[30-40]	13***	Cancer

Original data

3-anonymous data

The trade-off between privacy protection and data utility

Loukides, G., & Shao, J. (2008, March). Data utility and privacy protection trade-off in k-anonymisation. In *Proceedings of the 2008 international workshop on Privacy and anonymity in information society* (pp. 36-45). ACM.

The problem of re-identification

- **99.98% of US citizens** correctly identified in 'anonymised' datasets with just **15 demographic attributes including** age, gender, and marital status
- Example test: through date of birth, location (PUMA code), marital status and gender the model uniquely identifies 78.2 ± 0.5% of the 3 million people in this population

ARTICLE

https://doi.org/10.1038/s41467-019-10933-3

OPEN

Estimating the success of re-identifications in incomplete datasets using generative models

Luc Rocher ^{1,2,3}, Julien M. Hendrickx¹ & Yves-Alexandre de Montjoye^{2,3} 23 July 2019

DATA PRIVACY AND SECURITY TECHNOLOGIES

SYNTHETIC DATA GENERATION

«Machine learning enabling machine learning»

Generation of **synthetic datasets** through machine learning algorithms that recreate pre-defined characteristics of a target population for one or more clinical modalities

- Synthetic structured clinical data (cardiac function)
- Cardiovascular magnetic resonance images (MRI)

Galbusera, F., Niemeyer, F., Seyfried, M., Bassani, T., Casaroli, G., Kienle, A., & Wilke, H. J. (2018). Exploring the Potential of Generative Adversarial Networks for Synthesizing Radiological Images of the Spine to be Used in *In Silico* Trials. *Frontiers in bioengineering and biotechnology*, *6*, 53.

 input
 output
 target
 input
 output
 target

 1
 1
 1
 1
 1
 1
 1
 1

 2
 1
 1
 1
 1
 1
 1
 1
 1

 3
 1
 1
 1
 1
 1
 1
 1
 1
 1

- Scalable, GDPR-compliant
- **Complementary**: cannot replace patient data but can be a useful adjunct to accelerate testing and algorithm development;
- Risks of attribute disclosure still present

MHMD INNOVATIONS DATA PRIVACY AND SECURITY TECHNOLOGIES

SECURE COMPUTATION (*Privacy-preserving data flow execution*) Calculate algorithms on encrypted data – revealing RESULTS only

- Secure multi-party computation: parties jointly compute a function on entries in a distributed manner, keeping the inputs private
- **Homomorphic encryption:** data is encrypted before being sent to the computing service, and calculations are made on encrypted data

'Industrial & Enabling Tech' prize category (2018 and 2019 finalist)

MHMD INNOVATIONS DATA PRIVACY AND SECURITY TECHNOLOGIES Homomorphic encryption

DATA PRIVACY AND SECURITY TECHNOLOGIES

SECURE COMPUTATION (*Privacy-preserving data flow execution*)

Distributed deep learning:

federated and split machine learning where the training is distributed among trusted data providers with "differential privacy" guarantees

For more info:

Contact

info@myhealthmydata.eu

Website

http://www.myhealthmydata.eu/

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 732907

