
D6.9 Blockchain Analytics (2) MHMD-H2020-ICT-2016 (732907)

1

Call identifier: H2020-ICT-2016 - Grant agreement no: 732907

Topic: ICT-18-2016 - Big data PPP: privacy-preserving big data technologies

Deliverable 6.9

Blockchain Analytics (2)

Due date of delivery: October 30th, 2018

Actual submission date: November 29th, 2018

Start of the project: 1st November 2016

Ending Date: 31st October 2019

Partner responsible for this deliverable: Gnúbila

Version: 2.0

Ref. Ares(2018)6122498 - 29/11/2018

D6.9 Blockchain Analytics (2) MHMD-H2020-ICT-2016 (732907)

 2

Document Classification

Title Blockchain Analytics

Deliverable D6.9

Reporting Period 2

Authors Alexandre Flament, Mirko Koscina, Jérôme Revillard

Work Package WP6

Security Re

Nature Report

Keyword(s) Analytics, blockchain explorer

Document History

Name Remark Version Date

Jérôme Revillard Incrémental update of the D6.8 0.1 October 10th 2018

Mirko De Maldè Review of version 0.1 November 8th 2018

Jérôme Revillard New version taking into account

the review

2.0 November 27th 2018

List of Contributors

Name Affiliation

Alexandre Flament Gnúbila

Mirko Koscina Almerys

Jérôme Revillard Gnúbila

List of reviewers

Name Affiliation

Mirko De Maldè LYNKEUS

DISCLAIMER: This document is based on the already submitted D6.8. It

includes a new section (section 7) describing the newly-implemented MHMD

Blockchain Explorer

1 Scope of this document

This document corresponds to the Deliverable D6.9 Blockchain Analytics (2), based on the work done in T6.2

and T6.3. D6.9 is an update of the previously submitted D6.8 and will illustrate the blockchain usage thanks

to illustrative and eye-catching analytics. It will serve the purpose of feeding the project Website and

marketing materials.

The task T6.2 Blockchain Assessment, Prototyping and Integration consist into assess existing blockchain

technologies and select an appropriate candidate for implementation. Particular emphasis will be brought to

Ethereum and the Hyperledger technologies. Scalability will be a key point for the proposed infrastructure

and several data sharing, data indexing and (in memory) parallel processing techniques will be considered.

On the other hand, the task T6.3 Blockchain Infrastructure Deployment and Test consist in the deployment

of the technology selected in task T6.2 over the physical infrastructure of participating centres. More

specifically, hospitals such as OPBG, DHZB, GOSH will be installed and parameterized as the pillar nodes of

the system. Others will join at a later stage as the network will propagate in the community. A software

package will be released periodically that will allow external centres to join in. It will comprise the blockchain

mining service, API, the Data Catalogue (PID indexing) and core libraries from WP4. Once the blockchain

infrastructure is deployed, scale-up tests will be operated with synthetic data also from WP4, to validate the

overall infrastructure robustness, performance, and ad equation with the initially identified requirements.

This document is organized in seven sections. The section 1 corresponds to the scope of the document and

section 2 is an introduction about what is blockchain and how we can obtain data from it. Then in Section 3

we describe the components of Hyperledger involved in transaction flow and data storage. In Section 4 we

introduce the concept of chaincode to manage and develop applications on the blockchain. Then, in Section

5 we introduce a description of our implementation to feed the data analytics module.

In Section 7, a new tool named the Blockchain Explorer is presented: it provides different information about

the blockchain content.

2 Introduction

A blockchain system is a distributed ledger where all the transaction taken place in the network are stored in

blocks. These blocks are sorted and added to the network one by one forming a chain of block. The system

is decentralized because the ledger is replicated within the nodes participating in the processing services.

The security properties of this decentralized system are based on cryptographic techniques that make this

chain of blocks immutable. The new blocks generation and the ledger replication process within the node of

the network is governed by the consensus algorithm defined in the network. The consensus algorithm uses

cryptographic functions and business rules in order to decide which node will add the next block and the

replication of the last blockchain state to the rest of the nodes.

In any system is crucial to know the current status of the infrastructure and how this is being used

(operations, users, queries, among others) in order to measure the performance of the service that is running

on it. In the case of decentralized system, this can be more tricky than central system because the status will

depend on the nodes and there are several characteristics that made it more complex. In the case of

blockchain, to measure the different the status of the ledger will depend on multiples components that gives

life to the decentralized system.

A simple query to get information from a block implies that we must to connect to a specific channel (ledger)

and the find the block. In the case of transactions, these operations can be more complex because will

depend on the status. If we would like to know the status of a simulated transaction, endorsed transaction

or the committed transaction. We need to take in care the different modules of Hyperledger Fabric like:

consensus (responsible of the transactional confirmation process and block generation), the state database

to know the current status and membership service to know who is valid to perform specific instructions.

Hyperledger Fabric give us framework with standard instructions to operate over the network called

Chaincode. This is the one of the key elements of the blockchain implementations because give us a simple

interface to communicate with different nodes and channel in the decentralized system. In addition, we have

Hyperledger Composer that is a suite to manage and develop new applications for the blockchain in a friendly

user environment.

In the following sections we will describe the concepts introduced above and how all the components can

interact by using chaincode and hyperledger composer.

3 Hyperledger Fabric Blockchain

Hyperledger project was founded in 2015 by The Linux Foundation to advance the blockchain technologies

for multiple industries. The main goal is to facilitate and encourage the development of blockchain

implementation beyond the widely known cryptocurrencies.

Hyperledger Fabric is a blockchain framework that let us to implement smart contracts inside this private and

permissioned ledger. The smart contracts are used to provide controlled access to the ledger. Using smart

contract, it is possible to encapsulate information and store it across the network, and define business rules

that can execute transactions automatically. The permissioned of the ledger is reached by using an enrolment

service called Mermbership Service Provider (MSP). This facilitate the control over the network and also gives

flexibilities for the consensus algorithm because the lack of need to prove the honesty of the nodes by using

expensive techniques like Proof-of-Work. The identity manager administrates the user’s IDs and authenticate

all the participant member of the network. This service permits to parametrize different layers of permission

of specific networks operations, making possible to allow or block to some users to invoke or develop new

operations into the network. Additionally, Hyperledger Fabric offers privacy and confidentiality in the

network by using private channels. These are restricted messaging path that can be used to provide privacy

for a specific group of users into the network.

The smart contract triggered in the network are represented as intangibles assets by the decentralized

system. These assets are managed as a collection of key-values pairs, with state changes recorded as

transactions on a channel ledger. The operations, control or modifications of these assets are governed by

the chaincode. The chaincode corresponds to small programs that runs specific instructions in the ledger.

With these we can manage network rules, configuration parameters, query the ledger, among others.

3.1 Hyperledger Fabric Components

Heyperledger Fabric is a comprehensive framework to implement customizable business blockchain network.

The Fabric model is based on six components: Assets, Chaincode, Ledger, Channels, Security and Membership

Service, and Consensus [1]. All these components together make the full blockchain solution.

3.1.1 Assets

Hyperledger Fabric assets can range from intangibles like contracts and intellectual property to tangible like

real estates or any goods. These assets can be modified by using special chaincode transactions. In Fabric,

the assets are defined as a collection of key-value pairs with state changes recorded as transaction on the

ledger.

3.1.2 Chaincode

Chaincode is an application or code that lets to the administrator of the business blockchain define the assets

and the operations (transaction instructions) to modify them. Chaincode functions runs over the current

state database and are initiated through a transaction. As a result of the Chaincode execution, we obtain a

set of key value writes to submit to the network and be applied to the ledger on all the nodes.

3.1.3 Ledger

The blockchain ledger is a sequence of tamper-resistant record of all the state transaction in the system. The

state transitions are produced by transactions (invocations) submitted by members of the network. There is

one ledger per channel and each node store a copy of the ledger of which they are participating.

Within the ledger we can find the following features [1]:

• Query and update ledger using key-based lookups, range queries, and composite key queries

• Read-only queries using a rich query language (if using CouchDB as state database)

• Read-only history queries - Query ledger history for a key, enabling data provenance scenarios

• Transactions consist of the versions of keys/values that were read in chaincode (read set) and
keys/values that were written in chaincode (write set)

• Transactions contain signatures of every endorsing peer and are submitted to ordering service

• Transactions are ordered into blocks and are “delivered” from an ordering service to peers on a
channel

• Peers validate transactions against endorsement policies and enforce the policies

• Prior to appending a block, a versioning check is performed to ensure that states for assets that
were read have not changed since chaincode execution time

• There is immutability once a transaction is validated and committed

• A channel’s ledger contains a configuration block defining policies, access control lists, and other
pertinent information

• Channel’s contain Membership Service Provider instances allowing for crypto materials to be
derived from different certificate authorities

3.1.4 Channels

Channels are used to maintain subnets in the blockchain implementation. Each channel will have one ledger

with specific business rules. Fabric permits to configure the system according the business rules of the

service, letting to set a one common shared ledger for all the member or more than one with restricted

access to a selected group of members.

The implementation of multiples channels is uses to isolate the transactions and the ledgers. This can be

done by installing chaincode only on peers that need to access the asset state to read and/or write into the

private ledger. Additionally, is possible to encrypt the data by using common encryption scheme with their

correspondent secret keys.

3.1.5 Security and Membership Service

Hyperledger Fabric is a blockchain implementation where all the members are known participants. In order

to enrol and validate members, a Certificate Authority (CA) is implemented based on a Public Key

Infrastructure (PKI) environment. The CA is responsible of the digital certificate issuance process for each

member of the network. The certificates tied organization, network components, and end users or client

application. With this scheme is possible to govern the access to the entire network and on channel level by

authenticating members according their digital certificate.

3.1.6 Consensus

The consensus algorithm is one of the backbone of any blockchain implementation due to their responsibility

in the new blocks addition and the chain replication. In the case of Hyperledger Fabric, the consensus

algorithm takes part in the entire transaction flow from the proposal and endorsement, to the ordering,

validation, and commitment. The consensus is achieved when the transactions have been ordered and

passed through series of explicit policy criteria checks. These checks are part of the transaction lifecycle and

include endorsement policies to establish which members must to endorse the transaction (according their

type), as well as system chaincodes to ensure the policies enforcement. Also, are used system chaincodes to

validate that the transaction has been endorsed properly prior to commitment. Moreover, there is a

versioning check where the ledger current state is agreed before to add a new block to the chain. In addition,

there are identity verifications during all the transaction flow.

3.2 Chain

The chain corresponds to a transaction log where each transaction is recorded in block [2]. These blocks

contain N transactions and are sorted in sequences. Each block is linked to their predecessor by adding the

transaction hash value of the previous block in the header. In addition, the hash value of the transaction

recorded in the block is also stored in the header. This let maintain the chain ordered in sequence and linked

between consecutive blocks by using cryptographic functions.

The chain structure mentioned above is the responsible of the ledger immutability property. This means that

the hash link force that any change in a recorded transaction will affect to the block hash value. This forces

to the reconstruction of the entire chain from the block where the change was made it until the last block.

3.3 State Database

The state database is an indexed view of the transaction log and can be recovered at any time or

automatically upon the peers started up [2].

The current state database corresponds to the latest values for all keys ever included in the transaction log.

It is also known as World State because represent all the latest key values known to the channel. The current

state database is stored in the state database to make more efficient the operations from the chaincode.

Within the databases supported are levelDB and couchDB.

3.4 Transaction Flow

The transaction flow starts when an application client sent a transaction proposal to an endorsing peer. The

endorsing peer verify the digital signature of the client, and then simulate a transaction by executing a

chaincode function. From this process we get a set of key/value versions that were read in the chaincode

(read set) and a set of key/value that were written in the chaincode (write set). The transaction proposal

response is sent back to the client with the endorsement signature of the endorsing peer. Then, the client

broadcast a transaction payload with the endorsement to an ordering service. This service is responsible to

broadcast the ordered transactions to all the peers on the channel.

Once the peers have received the transactions they will validate the it according the endorsing policy of the

channel, and also authenticate the signatures with respect to transaction payload. This process ensure that

the correct allotment of specific peer have signed the result of the transaction proposal. In addition, peers

check the versioning of the read set in order to ensure the data integrity and protect against double-spend

attack. Finally, for each valid transaction the write sets are committed to the current state database and the

block is appended to the chain [2].

In Figure 1 we can see the transaction flow of Hyperledger Fabric [3].

Figure 1: Hyperledger Fabric Transaction Flow (copyright Linux Foundation – Hyperledger Project)

4 Chaincode

Chaincode is an application that manage the business logic of the network [4]. From the practical point of

view, chaincode can be considered as a smart contract because is a business logic agreed by the network

members. The chaincode runs in a secured Docker container isolated from the endorsing peer process and,

initialize and manages the ledger state through the transactions sent by the applications.

The chaincode has two perspectives, one for developers and other for operators. The Chaincode for

Developers is focused on the application development to add or control functionalities in customized by the

implementer. On the other hand, the Chaincode for Operators is oriented to manage the blockchain network.

4.1 For Developers

The chaincode programs are developed in Go, Java or Javascript languages and must implement the

chaincode interface [5]. These interfaces are methods called in response to received transaction. In the case

of the Init method, this is called when a chaincode receives an Instantiate or Upgrade transaction. With this

instruction the chaincoide performs any necessary initialization (including initialization of the application

state).

On the other hand, the Invoke method is called in response to an invoke transaction to process the

transaction proposal. In addition, there is a chaincode interface called ChaincodeStubInterface, which is used

to access and modify the ledger, and to perform invocations between chaincodes.

4.2 For Operators

The chaincode for operations let to administrate the system by using an API that can accessed by command

line. The commands to manages the chaincode lifecycle are: package, install, initiate and upgrade. Once the

chaincode is installed and initiate, this remains active to process transaction via invoke.

Additionally, the system chaincode runs within the peer process instead of run in an isolated container like

normal chaincode. This chaincode are used to implement a number of system behaviour that can be modified

or replaced by the system administrator. Currently, we have available the following system operations [6]:

• LSCC: Lifecycle system chaincode handles lifecycle requests described above.

• CSCC: Configuration system chaincode handles channel configuration on the peer side.

• QSCC: Query system chaincode provides ledger query APIs such as getting blocks and transactions.

• ESCC: Endorsement system chaincode handles endorsement by signing the transaction proposal
response.

• VSCC: Validation system chaincode handles the transaction validation, including checking
endorsement policy and multiversioning concurrency control.

For example, In Figure 2 we can see the chaincode swim-lane [7] of a transaction process in Hyperledger

Fabric.

Figure 2: Hyperledger Fabric Chaincode Swimlane (copyright Linux Foundation – Hyperledger Project)

5 Implementation

The implementation of the module for data analysis for MHMD is based on an integration between the

different components of the ledger. The assets represent the information that we have recorded in the

ledger, the channel is ledger to query, the database is the current status of the chain, the chaincode are the

functions that let us to query the ledger and the transaction are the triggers to execute some operation on

the chain.

To get access to the different components of the ledger and create a new business logic for this purpose, it

is necessary a development platform to make simple the management and development on the blockchain.

The tool selected to implement the programs to feed the data analytics module is Hyperledger Composer.

With this tool we will operate the ledger and also we will develop the smart contracts and the business logic

to feed the analytics module.

5.1 Hyperledger Composer

Hyperledger Composer is a comprehensive toolset to develop blockchain applications [8]. This suite let us to

develop an API that run some business rules to get specific data to feed it to the data analytics module. Also,

is managed by Composer the access to different queries in order to maintain the restricted the operations

on the private channel (ledger). In Figure 3 we can see how composer interact with the Hyperledger

Blockchain.

Figure 3: Hyperledger Composer Diagram (copyright Linux Foundation – Hyperledger Project)

5.2 Implementation for MHMD

The analytics module is based on Hyperledger Explorer that run on Hyperledger Composer. The MHMD

Analytics will interact with the Composer framework (Rest Server-CLI and SDK) to periodically query to the

ledger the number of transactions, number of blocks and number of nodes into the network.

5.3 MHMD Hyperledger Explorer

5.3.1 Transactions Query

The amount of transactions can be query by reading the HistorianRecords of the channel. This record contains

the information about the historical transactions and can be query the full container and just for specific

transactions. The implementation for MHMD is based on the query of the full HistorianRecord in order to get

the total amount of transaction performed in the network.

The implementation of the transaction query is presented below:

 .then(() => {

 return MHMDNetworkConnection.getHistorian();

 }).then((historian) => {

 return historian.getAll();

 }).then((historianRecords) => {

 console.log(prettyoutput(historianRecords));

 })

MHMD Analytics/Hyperledger
Explorer

Composer CLI Rest server

SDK

Hyperledger Composer

Hyperledger Fabric

5.3.2 Block Count Query

The number of blocks will give us the information about growing rate of the chain and also we can calculate

the performance of the consensus algorithm. With this we can measure the time that takes to the system

to confirm a new transaction by adding it into a new block.

An implementation example of the block count query is presented below:

type BlockchainInfo struct {

 Height uint64 `protobuf:"varint,1,opt,name=height"

json:"height,omitempty"`

 CurrentBlockHash []byte

`protobuf:"bytes,2,opt,name=currentBlockHash,proto3"

json:"currentBlockHash,omitempty"`

 PreviousBlockHash []byte

`protobuf:"bytes,3,opt,name=previousBlockHash,proto3"

json:"previousBlockHash,omitempty"`

}

5.3.3 Participants Count Query

The participants count gives us the status of the network according the number of participants. This

information can be presented as a total number of participant and/or according the role into the network.

The implementation of the nodes count query is presented below:

 const MHMDNetworkConnection = require('composer-

client').MHMDNetworkConnection;

 let MHMDNetworkConnection = new MHMDNetworkConnection();

 return MHMDNetworkConnection.connect('hlfv1', 'digitalproperty-network',

'admin', 'adminpw')

 .then(() => {

 return MHMDNetworkConnection.getIdentityRegistry();

 })

 .then((identityRegistry) => {

 return identityRegistry.getAll();

 })

 .then((identities) => {

 identities.forEach((identity) => {

 console.log(`identityId = ${identity.identityId}, name =

${identity.name}, state = ${identity.state}`);

 });

 return MHMDNetworkConnection.disconnect();

 })

 .catch((error) => {

 console.error(error);

 process.exit(1);

 });

6 MHMD Analytics Mockup

The dashboard is meant to display, in an efficient and eye-catching way, every relevant data related to the

blockchain. It must be appealing and yet insightful, using charts and graphical components to illustrate the

data gathered by our software. It’s meant to be a powerful and highly interactive interface, with many metrics

to look at.

The mockup of the full dashboard is presented below:

Figure 4: MHMD analytics Dashboard

6.1 Block processing

Figure 5:Clock-like visualization for block processing time

This component displays the average time for block processing in a clock-like visualization. It is measured in

blocks per minutes

6.2 Number of nodes

Figure 6: Number of nodes visualization

This component displays the total number of nodes in the system. The visualization is made with circles linked

to each other to represent the nodes and the blockchain.

6.3 Textual space

Figure 7: Information text box

A block for displaying information that’s not related to any type of data, or presenting how the blockchain

works.

6.4 GDPR complience

Figure 8: GDPR information box

The total number of protected persons in the blockchain. Also, a reminder of the GDPR norms, and how

MHMD is complying with these laws. Complementary can be displayed by hovering the circles. The three

main axis are:

- Compliance journey

- Right to be forgotten

- Transparency client

6.5 Social networks data

Figure 9: Social network data box

This block displays the data gathered by DigiMe. It could be images, text or metadata from Twitter, Facebook,

Flickr, Pinterest and Instagram.

6.6 Blockchain data

Figure 10: General blockchain data box

This block is used to displays data related to the blockchain. It could be specifications of the blockchain:

advantages, costs, transparency, decentralization… I can also display some data like: Number of participants

by types (hospitals, research labs, Digime…), number of transactions…

The nodes have different logos and reveals their information on hover, with a soft popup.

6.7 Repartition of studies

Figure 11: Studies distribution box

A detailed sunburst graph is used to display the repartition of studies per types: Hospitals, research labs… It’s

interactive and can be zoomed in or out.

6.8 Transactions

Figure 12: Transaction chart box

A detailed chart graph using blockchain data to display the evolution of transactions through time. It can be

relative to any period of time.

6.9 FedEHR data

Figure 13: FedEHR data box

This block contains all the relevant data gathered in FedEHR like:

- Number of patients

- Number of clinical variables

- Number of medical events

- Number of hospitals

7 MHMD Blockchain Explorer

Some of the presented metrics has been Implemented with a tool that is called MHMD Blockchain Explorer.

This tool is based on the Hyperledger Explorer [9]. As explained, the Hyperledger Explorer is a blockchain

module and one of the Hyperledger projects hosted by The Linux Foundation. Designed to create a user-

friendly Web application, Hyperledger Explorer can view, invoke, deploy or query blocks, transactions and

associated data, network information (name, status, list of nodes), chaincodes and transaction families, as

well as any other relevant information stored in the ledger. Hyperledger Explorer was initially contributed by

IBM, Intel and DTCC.

Hyperledger explorer consist in a backend application that runs on the top of Hyperledger composer. The

communication between the backend application and the client is through a REST API that allows us to invoke

the functions implemented in the different chaincodes loaded in the peers connected to the network.

Additionally, Hyperledger explorer included pre-defined function to show graphically information about

ledger the network status such us: blocks generated, number of transactions settled, numbers of

organisations, numbers of nodes, numbers of chaincodes, among others.

This tool is intended to be deployed in all the MHMD sites and will provide the sites administrators a way to

see what occurs into the blockchain.

In the following sections, we will go through the different functionalities.

7.1 The top banner

The web interface is composed of a top banner as shown in the following figure

Figure 14: the top banner

This banner is the main navigation entity of the interface. It allows to display the following pages:

• Dashboard: corresponds to the main page where is shown general information about the blockchain

services.

• Blocks: page with the list of blocks generated in the network

• Transactions: page to display the list of transactions

• Chaincodes: page with the list of chaincode loaded in the peers of the system

• Channels: page with list of channels where the peers are connected

• Network: page with the list of peers connected to the channel

• MHMD: pages with the list of data item registered in MHMD and the list of studies created into the

network

7.2 Dashboard

The main page is a dashboard which provides high level information on the MHMD blockchain network.
The dashboard shows the information of the status and statistics of the MHMD service.

In the upper side of the page, we displayed a summary of the number of blocks generated, the number of
transactions settled, the number of nodes connected to the network, and the chaincodes installed in the
peers. In the middle side we show a pie chart to display the amount of transactions per organization. In the
analytics charts, we display a dynamic graph to show the evolution of the number of blocks per hour, blocks
per minutes, transactions per hour, and transactions per minutes. In the end of the page, we present the
list of the recent blocks created and the status of the peers connected to the network.

Figure 15:Landing page

7.3 Blocks

The blocks section aims at giving detailed information of the different blocks which were added into the

blockchain. The block list is sorted in descending order and for each block is shown: the block number, the

number of transactions included in the block, the hash value of the data, the block hash, the previous block

hash and the transaction ID of the transactions included in this block.

Figure 16: The Blocks page

The block hash includes a link to see the details of the block. The information displayed include the channel

name, block ID, block number, time stamp when was created, number of transactions, block hash, data hash

and previous block hash (see figure 17).

Figure 17: block detail

The transaction column lists the transaction ID of all the transactions included in the block. Each ID has a link

to show the transaction details (see figure 18). The information displayed corresponds to the transaction ID,

the member service provider that created the transaction, the endorser that has endorsed the transaction,

the chaincode used in the operation executed in the transaction, the transaction type, the time stamp, and

chaincode used for the read/write operation included in the transaction. In the case of MHMD, the lscc

chaincode manage the lifecycle of the chaincode running on each peer, and the mhmdcc is responsible to

execute the special function developed to create studies and enforce GDPR.

Figure 18: block transaction details

7.4 Transactions

The transactions page lists the transactions that have been settled in the blockchain. The list includes
information about the organization that created it, the transaction ID, the transaction type, the chaincode
invoked by the transaction, and the transaction timestamp. The transaction ID has a link to the show more
details about it as was presented in section 7.3 (figure 18).

Figure 19:Transactions detail

7.5 Chaincodes

This page displays the different chaincodes installed in each the peer connected to the MHMD blockchain

network. The chaincode list represent the list of smart contracts running in the network. In the final MHMD

set up, we will have specific smart contracts for each study purpose.

Figure 20: Chaincodes list

7.6 Channels

This page displays the different channels available into the blockchain. In the MHMD case, we will have one

channel responsible to keep the tracking of the data sharing process lifecycle and to enforce the security

policies stablished by GDPR.

Figure 21:Channels list

7.7 Network

The network page displays the list of peers connected to the network. The peers can be displayed by

organisation, role or all togethers. The MHMD set up consider two peers per each organization.

Figure 22: Network page

7.8 MHMD

The MHMD page show status about the service offered by the network regarding the data sharing process
lifecycle. Through this page, we can see the list of studies created into the network and the list of items
registered in the data catalogue.

In the upper side of the page, we display the status of the study:

• Defined: once the study is created by the researcher and the request was recorded in the blockchain

• Started: once the member of the network has communicated their participation in the study request

• Access granted: once the members has confirmed that they have fulfilled all the security
requirements to share the data (i.e. patient consent)

• Ready: once each member has made available their data package to be shared

• Downloaded: once the data requestor has successfully downloaded the full data package

In the lower side of the page we display the status history by date and hour

Figure 23: Studies list

The GDRP registry show the list of data items that have been registered in the MHMD platform including the
data source, the data item ID, the hash of the item registered, the hash of the data item, and the bitmap
offset to map the individual data items with the blockchain hash proof of existence.

Figure 24:Data items list

8 References

[1] Hyperledger-fabric.readthedocs.io. ”Hyperledger Fabric Model”, Hyperledger-fabricdocs master documentation,

2017

[2] Hyperledger-fabric.readthedocs.io. ”Ledger”, Hyperledger-fabricdocs master documentation, 2017

[3] Hyperledger-fabric.readthedocs.io. ”Architecture Explained”, Hyperledger-fabricdocs master documentation, 2017

[4] Hyperledger-fabric.readthedocs.io. ”Chaincode Tutorials”, Hyperledger-fabricdocs master documentation, 2017

[5] Hyperledger-fabric.readthedocs.io. ”Chaincode for Developers”, Hyperledger-fabricdocs master documentation,

2017

[6] Hyperledger-fabric.readthedocs.io. ”Chaincode for Operators”, Hyperledger-fabricdocs master documentation,

2017

[7] Hyperledger-fabric.readthedocs.io. ”Chaincode Swimlanes”, Hyperledger-fabricdocs master documentation, 2017

[8] https://hyperledger.github.io. ”Welcome to Hyperledger Composer”, Hyperledger Composer documentation, 2017

[9] https://www.hyperledger.org/projects/explorer. ”Hyperledger Explorer”, documentation, 2018

