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We consider a data owner that outsources its dataset to an untrusted server. The owner wishes to enable the
server to answer range queries on a single attribute, without compromising the privacy of the data and the
queries. There are several schemes on “practical” private range search (mainly in databases venues) that attempt
to strike a trade-off between efficiency and security. Nevertheless, these methods either lack provable security
guarantees, or permit unacceptable privacy leakages. In this paper, we take an interdisciplinary approach, which
combines the rigor of security formulations and proofs with efficient Data Management techniques. We construct
a wide set of novel schemes with realistic security/performance trade-offs, adopting the notion of Searchable
Symmetric Encryption (SSE) primarily proposed for keyword search. We reduce range search to multi-keyword
search using range covering techniques with tree-like indexes, and formalize the problem as Range Searchable
Symmetric Encryption (RSSE). We demonstrate that, given any secure SSE scheme, the challenge boils down
to (i) formulating leakages that arise from the index structure, and (ii) minimizing false positives incurred by
some schemes under heavy data skew. We also explain an important concept in the recent SSE bibliography,
namely locality, and design generic and specialized ways to attribute locality to our RSSE schemes. Moreover,
we are the first to devise secure schemes for answering range aggregate queries, such as range sums and range
min/max. We analytically detail the superiority of our proposals over prior work and experimentally confirm
their practicality.
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1 INTRODUCTION
We focus on a setting with two parties; a data owner and a server. The owner outsources its dataset to
the server, and gives the latter the authority to answer range queries on a single attribute. The server
is untrusted, and the goal is to protect the privacy of the dataset and the queries. The owner encrypts
its data prior to sending them to the server. The challenge lies in enabling the server to process the
owner’s queries directly on the encrypted data, while achieving performance and costs close to the
non-private case. The benefits of data outsourcing and the importance of privacy have been stressed
in numerous earlier works (e.g., [18, 59, 62, 66]).

Prior work. Privacy-preserving range queries can be solved with optimal security via powerful
theoretical cryptographic tools, such as Oblivious Random Access Machine (ORAM) [32, 56] and
Fully Homomorphic Encryption (FHE) [27, 28]. Nevertheless, despite their recent advances, both
these tools are prohibitively costly for large database applications [63–65]. Motivated by this, there
is a long line of work on private range search (especially in databases venues) that attempts to strike
a more desirable balance between security and practical efficiency [33, 35, 36, 59, 66].

All existing approaches either lack provable security guarantees, or permit unacceptable leakages.
For instance, [33, 35, 36] employ deterministic encryption and bucketization techniques that map
tuples with the same query attribute value to the same bucket. Deterministic encryption leaks the
distribution of the data on the query attribute. Moreover, these schemes do not offer standard security
definitions and proofs, which makes it hard to determine any other possible leakage. Another set
of works utilizes Order Preserving Encryption (OPE), which has the property that the ciphertexts
preserve the ordering of the plaintexts [6, 7, 46, 51, 58]. As such, traditional efficient indexes can be
built directly on encrypted data, and queried in the same manner as for plaintexts. Nevertheless, OPE
is also deterministic, inheriting the distribution leakage. In addition, it inevitably leaks the ordering
of the data.

The work closest to ours is by Li et al. [50], which follows the notion of Searchable Symmetric
Encryption (SSE) [12, 13, 16, 18, 41, 62]. SSE has been studied extensively for keyword queries.
It relaxes the security of ORAM by leaking the access patterns of each query (i.e., which data
it “touches”), as well as the search patterns (i.e., which queries are the same). However, nothing
else is leaked (e.g., data distribution). The gain from allowing this leakage is efficiency, since SSE
schemes typically build on fast inverted indexes and make use of lightweight cryptography, such as
Pseudorandom Function (PRF). SSE also provides a rigorous framework for accurately defining
leakage for any construction. Unfortunately, the scheme by Li et al. [50] relies on weak, obsolete SSE
definitions (explained in detail in Section 2.1). Moreover, it unnecessarily introduces false positives
and does not support updates. Most importantly, it does not define leakages that are introduced by the
tree structure utilized in query execution. As we will show later, one of our baseline constructions
is built on similar ideas to [50], but offers substantially better security and performance, accurately
defining leakage, avoiding false positives, and supporting updates.

Our contributions. In this paper, we revisit practical private range search, taking an interdisciplinary
approach that combines the state-of-the-art definitional framework of SSE [18], with efficient data
management methods. In particular, we reduce range search to multi-keyword search using range
covering techniques with tree-like indexes, i.e., converting a range into sub-ranges, each representing
an index node and receiving a keyword label. Contrary to off-the-shelf multi-keyword SSE schemes
[13] that incur a prohibitive linear search time in the dataset size, we design efficient techniques
based on single-keyword SSE protocols. We also show that we can use the (single-keyword) SSE
security games to prove the security of a Range Searchable Symmetric Encryption (RSSE) scheme,
by carefully defining the extra structural leakage stemming from the use of the tree index to convert
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Table 1. Summary of our RSSE schemes and analytical comparison to our closest competitor

Scheme Security Query Size Search Time Storage False Posit.
Li et al. [50] 0 O (logR) Ω(logn logR + r ) O (n logn logm) O (r )

Quadratic 7 O (1) O (r ) O (nm2) –
Constant-BRC 1 O (logR) O (R + r ) O (n) –
Constant-URC 2 O (logR) O (R + r ) O (n) –
Logarithmic-BRC 3 O (logR) O (logR + r ) O (n logm) –
Logarithmic-URC 4 O (logR) O (logR + r ) O (n logm) –
Logarithmic-SRC 7 O (1) O (n) O (n logm) O (n)
Logarithmic-SRC-i1 6 O (1) O (R + r ) O (n logm) O (R + r )
Logarithmic-SRC-i2 5 O (1) O (r ) O (m + n logn) O (r )

n: dataset size, r : result size, m: domain size, R: query range size
Note: Our schemes are named after the storage expansion factor and the range covering technique. A higher value in the Security column

means better security guarantees. We use the following scale for a coarse-grained analysis of the security levels; 0: Not provable secure
solution, 1-2: Order information about the individual tuples is leaked in every query access, 3-4: Order information is leaked by analyzing
and combining the previously observedleakages, 5-7: Information about the sizes of the queried results is leaked. Please see the Qualitative
comparison of each scheme for furtherdetails. Finally, the construction time cost is the same as the storage cost.

a range into a set of keywords. This has the important benefit that any secure SSE scheme can be
used as a black box to realize a RSSE scheme, which means that any future advances in the active
area of SSE can be readily incorporated into a RSSE construction.

We emphasize that expressing a range with sub-ranges mapped to index nodes gives a lot of
flexibility in designing RSSE schemes with variable efficiency and security guarantees. We also
point out that the choice of the range covering method affects the security guarantees and could lead
to false positives, especially under heavy data skew. To capture the above, we devise a wide set of
solutions, which revolve around trading storage overhead and (potentially) false positives for security.
Our constructions with their performance and security characteristics are summarized in Table 1 and
discussed in detail throughout the paper. We also quantify the costs of Li et al. [50], which is clearly
subsumed by our Logarithmic-BRC scheme.

Logarithmic-SRC-i1 offers the best trade-off between security and efficiency among all our
solutions. It employs a novel directed-acyclic graph (DAG) structure that resembles a tree, and
entails an extra round of communication between the owner and the server (“i” in its name stands for
interactive). This index even allows hiding the order of the results, and minimizes the false positives.
Logarithmic-SRC-i2 targets at (asymptotically) eliminating the false positives, but introduces some
extra space overhead as compared to Logarithmic-SRC-i1. It is noteworthy that two of our schemes,
namely Constant-BRC and Constant-URC, rely on the notion of Delegatable PRFs [47] and are
motivated by a brief discussion included in [47]. Our contribution lies in formalizing the solutions
and proving them secure.

In addition, contrary to existing dynamic SSE solutions (DSSE) [12, 40, 41, 62], we tackle updates
in a manner closer to the one employed in large-scale database systems. In particular, the DSSE works
attempt to devise dynamic indexes that handle updates with the minimum possible leakage. We stress
that databases like Vertica [48] perform the updates in batches, such that (i) each batch is treated as
an independent instance of the dataset, and (ii) multiple batches periodically get consolidated into
a single dataset. This is to amortize the average update cost, and substitute numerous random disk
accesses with a few linear scan operations. We formulate updates in our setting by effectively using
multiple static RSSE instances that periodically get consolidated and re-encrypted.

Our RSSE schemes rely on the performance of the chosen underlying SSE scheme. A typical
SSE scheme creates a secure version of an inverted index for efficient keyword search. For the sake
of security, if a keyword is associated with multiple documents, these documents must appear in
random locations in the server’s storage. This impacts search performance, since the server may
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end up performing numerous random accesses (which are expensive particularly on a spinning disk)
and PRF computations. More recent SSE literature addresses this issue of locality, and designs
efficient constructions that place the keyword results in contiguous storage locations, at the expense
of some extra storage cost for providing provable security (e.g. [2]). We explain that, utilizing such
an SSE scheme as a black box can attribute locality to any of our RSSE schemes. However, our
RSSE schemes inherit the storage expansion of the locality aware SSE scheme. Motivated by the
fact that Logarithmic-SRC-i1 and Logarithmic-SRC-i2 already expand their storage requirements
and by observing the particular structure of their indices, we design a locality aware variant, called
Logarithmic-SRC-i∗, without asymptotically increasing the storage. We experimentally demonstrate
that Logarithmic-SRC-i∗ offers orders of magnitude faster search compared to Logarithmic-SRC-i1
and Logarithmic-SRC-i2.

Finally, we are the first to address range aggregate queries in the context of RSSE. For instance,
a range sum query retrieves the sum of values on some attribute B of the tuples whose values on
some other attribute A fall in a user-specified range. Another range aggregate query is the range min,
which returns the minimum value instead of the sum of values in the above example. We construct
two secure schemes, one for range sum based on prefix sums [4], and one for range min based on the
sparse table technique from [3]. We demonstrate how to support these queries even in the presence
of updates. We also explain how these constructions can be easily modified in order to solve other
range aggregate queries, such as range count, average, max, top-k and bottom-k.

Our contributions are summarized as follows:

• We are the first to formalize private range search in the context of state-of-the-art SSE,
effectively introducing the first concrete Range Searchable Symmetric Encryption (RSSE)
framework.
• We devise numerous RSSE schemes, identifying various trade-offs between efficiency and

security.
• We tackle updates by adopting techniques from large-scale database systems, while formalizing

the leakages.
• We explain how to attribute locality to all our RSSE schemes in a generic manner, at the

cost of extra space. We also design a new locality aware variant of Logarithmic-SRC-i1
and Logarithmic-SRC-i2, called Logarithmic-SRC-i∗, which does not sacrifice any space
complexity as compared to its counterparts.
• We formalize and solve range aggregate queries. Specifically, we design secure schemes for

range sum and range min, which can be further extended to capture more queries, such as
range count, average, max, top-k, etc.
• We analytically detail the superiority of our constructions over prior work and experimentally

confirm their practicality.

Our proposed schemes focus on the foundational case of one-dimensional private range search.
However, we explain that they can be easily tailored to the more general multi-dimensional case
(where one wishes to provide range predicates on multiple attributes). Although it is not in the scope
of this work to design a specialized efficient multi-dimensional solution, we hope that our approach
can pave the way for a complete study of this important problem.

Our paper is self-contained, in the sense that it does not require any particular knowledge on
security or data management. We provide both the rigorous definitions and the intuition behind all
the formalism. The remainder of the paper is organized as follows. Section 2 provides the related
work and useful preliminaries, and Section 3 defines the targeted problem. In Sections 4, 5, and 6 we
present the quadratic, constant, and logarithmic schemes. Section 7 attributes locality to our schemes.
We discuss generic attacks on range queries and propose ways to tackle them in Section 8. Section 9
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discusses handling of updates, Section 10 solves range aggregate queries, and Section 11 provides
the experimental evaluation. Finally, Section 12 provides concluding remarks and discusses future
extensions to the case of multi-dimensional range queries.

2 BACKGROUND
Section 2.1 surveys the related work, whereas Section 2.2 includes necessary preliminary information.

2.1 Related work
General privacy-preserving queries can be solved with optimal security guarantees using powerful
cryptographic protocols, such as Fully Homomorphic Encryption (FHE) [27, 28] and Oblivious
RAM (ORAM) [32, 56]. FHE enables the execution of any function directly on the ciphertexts,
without revealing anything about the result. Unfortunately, despite the recent advances, FHE is still
impractical due to the prohibitive ciphertext size and computational time. ORAM enables access to an
encrypted memory space, without disclosing which memory location is accessed, thus hiding both the
data and the access patterns of the queries. Even the most efficient ORAM schemes [63–65, 68] suffer
from high bandwidth overhead and client storage cost, and require multiple rounds of communication.
Kellaris et al. [45] proposed the first approach, based on ORAM and differential privacy, to support
private range search, such that the tuple order information is protected from recently proposed attacks.
Our solutions are more efficient, as they avoid the poly-logarithmic overhead induced by ORAM.
Section 8 explains how we can apply the findings of [45] to our schemes, in order to protect them
from the new attacks, without using ORAM protocols. Furthermore, a wide set of techniques attempts
to mitigate the above issues, trading security for efficiency. Below we focus mainly on those targeting
range queries.

One class of techniques relies on deterministic encryption (DET) that maps two equal plaintexts to
the same ciphertext [33, 35, 36] (its counterpart being probabilistic encryption), enabling equality
queries on encrypted data. Hacigumucs et al. [33] were the first to introduce the problem of private
database search, by proposing a bucketization-based data representation for efficiently searching on
encrypted data. [33, 35, 36] perform bucketization (accompanied by indexing) of data by encrypting
based on the query attribute, and reduce range search to a set of equality queries that retrieve
matching buckets. Although these schemes are quite efficient, they inherit the drawback of DET,
which discloses the distribution of the data (since the bucketization essentially reveals a histogram of
the data on the query attribute). Moreover, they do not offer rigorous security definitions and proofs.
In the database community, another class of methods called Order Preserving Encryption (OPE)
was introduced by Agrawal et al. [1]. OPE has been extensively studied by both the database and
the crypto community [6, 7, 42, 46, 51, 58]1. OPE schemes have the property that the ciphertexts
preserve the order of the plaintexts. Therefore, efficient traditional indexes can be built on the
ciphertexts, in the same manner as on plaintexts. OPE is deterministic and, thus, inherits the data
distribution leakage of DET. In addition, it also leaks the order of the data and, hence, offers even
weaker security than DET. A related primitive, called Order Revealing Encryption (ORE) [8, 17, 49],
achieves slightly better security guarantees than OPE at the cost of some performance loss. However,
it still reveals the order of the plaintexts. A recent work of Naveed et al. [54] shows that any database
encrypted using DET and OPE is not reliable, as it is rendered vulnerable to severe attacks. This
allows an attacker to decrypt the actual encrypted records. However, DET and OPE can be used in
the particular case of encrypting unique attributes, and attributes that cannot be ordered.

1The paper of Karras et al. [42] belongs to the family of works related to OPE schemes, but lacks formal provable security
guarantees; the recent work of Horst et al. [37] provides attacks against the schemes proposed by Karras, denoting the
importance of rigorous security analysis of newly proposed schemes.
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Searchable Symmetric Encryption (SSE) [2, 12–16, 18, 21, 23, 29, 40, 41, 55, 61, 62, 67] has
been initially proposed in the context of keyword search, having as main goals to (i) introduce
rigorous security definitions, and (ii) enable the design of schemes that avoid the leakages of DET,
while retaining high efficiency. There is currently no off-the-shelf SSE scheme that supports range
queries. As we shall see, in our work (as well as in [50] described below) we effectively reduce range
search into multi-keyword search. The only SSE schemes that seems applicable to multi-keyword
search is that of [13, 39] which target Boolean queries and can express multi-keyword search as a
disjunction of keywords. Unfortunately, both solutions suffer from increased leakages. In addition,
disjunctions in [13] are answered in linear time in the number of documents and [39] improves
the aforementioned search time but it stores an encrypted index that is not linear in the number of
documents,id pairs, which conflict both with our performance and security desiderata.

A closely related work to ours is the basic scheme of Li et al. [50]. Note that the authors also
introduce two other schemes, which however share similarities with OPE and, hence, inherit its
drawbacks explained above. In the sequel, any reference to [50] implies the basic scheme. This
scheme assumes a binary tree over the query attribute domain, and computes for every tuple d in
the dataset D the logm dyadic ranges covering its attribute value, wherem is the domain size. Let
the dyadic ranges of item d be denoted by DR (d ). Li et al. create a binary tree as follows. The root
initially corresponds to all data items, and stores a Bloom filter [5] over {DR (d ) : d ∈ D}. The
algorithm works recursively, starting from the root and working top-down. At each node, it randomly
permutes and splits the data items in two sets, each corresponding to one child. Then, it stores a
Bloom filter over the DR values for the data items corresponding to each node. Eventually, each leaf
contains a Bloom filter indexing only DR (d ) for a single d. A range query is answered by splitting
the range into its O (logR) minimal dyadic ranges, where R is the range size over the domain, and
traversing the tree by checking whether the Bloom filter in each node “contains” some minimum
dyadic range.

The costs of [50] are included in Table 1. The scheme fixes the ratio of the false positives (inherent
to Bloom filters) at each node. This results in O (n logn logm) storage cost, and O (r ) false positives,
where n is the dataset size and r the result size. Moreover, the query size is O (logR), whereas the
search time is Ω(logn logR + r ). Note that it is difficult (and out of our scope) to find a tight upper
bound for the actual search time, due to the random perturbation of the items in the tree and the
false positives, but [50] points out that this could be O (r logn). Performance aside, the most severe
drawback of [50] is its security. First, it relies on the SSE definitions from Goh [29] which have been
proven weak by [15, 18]; at a very high level, Goh [29] implies that the privacy of the encrypted
queries (trapdoors) is not protected, whereas [18] protects both the data and the queries. Second,
[50] focuses on non-adaptive adversaries; from a practical point of view, this means that [50] is
secure only in applications that allow the users to ask all their queries once in a batch, and then they
shut down. Contrary, it is not secure against adversaries that ask some queries first and, based on the
responses they get, then adapt their attacks and ask more targeted queries later. This considerably
limits the applicability of this solution in realistic settings. Finally, [50] does not support updates. We
introduce Constant-BRC/URC (Section 5) and Logarithmic-BRC/URC (Section 6.1) that subsume
[50] in all aspects.

After our conference submission [22], [26, 34] proposed new schemes for private range queries.
[34] has more leakage than our Constant-URC/BRC and it is also less efficient than all of our
proposed schemes, since it has poly-logarithmic (O (loд2m)) amortized search time (while the worst
case is O (n log2m) even in the static case). Additionally, Fuhry et al. [26] proposed a new scheme
for private range queries using secure hardware (Intel SGX). In addition to the fact that this work
is incomparable with ours (since it relies on the existence of secure hardware), this paper has more
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leakage than our schemes and is vulnerable to various side channel attacks. Faber et al. [24] also
independently proposed schemes for range querying. Two of their schemes are practically the same as
our Logarithmic-BRC/URC, whereas their three-range cover solution is similar to our Logarithmic-
SRC scheme (which is single-range cover). However, they did not consider false positives under
data skew, which is efficiently captured by our most advanced methods, Logarithmic-SRC-i1 and
Logarithmic-SRC-i2.

There is a long line of work on creating dynamic SSE (DSSE) schemes to handle updates [12,
40, 41, 62]. The challenge in these works is to achieve a property called forward privacy; the
server should not learn that a newly added item satisfies a query issued in the past. Most solutions
focus on creating a dynamic secure index. In our work, we take an alternative approach that satisfies
forward privacy, by utilizing only static SSE schemes and combining them with efficient bulk-loading
techniques adopted from large-scale database systems (such as Vertica [48]).

Range queries have also been studied in a different setting where there are multiple parties
contributing to the owner’s dataset using her public key, and the owner issues its range queries on
this collective dataset with her secret key [9, 60]. This setting is based on asymmetric cryptography
and, entails considerably higher computational costs than our schemes.

We are the first to propose private range aggregate queries. The closest work for aggregate queries
is [70], which however does not provide a solution for range aggregate queries and is based on the
existence of secure hardware (Intel SGX).

In the conference version of this paper [22] we formalized the RSSE problem and designed the
Quadratic, Constant-BRC/URC, Logarithmic-BRC/URC/SRC and Logarithmic-SRC-i1 schemes. In
this long version, we introduce two new schemes, namely Logarithmic-SRC-i2 that can significantly
reduce (asymptotically) the false positives, and Logarithmic-SRC-i∗ that provides locality and, hence,
much faster search at the server. In addition, we design new searchable schemes for range aggregate
queries, such as range sum and min. Finally, we add proof sketches and experiments for all proposed
schemes.

2.2 Preliminaries
We explain in turn two range covering techniques with binary trees, the PRF and DPRF cryptographic
tools, the required definitions and constructions we adopt from the SSE literature, and useful
techniques for efficiently answering range aggregate queries.

Range covering techniques. Let A be a domain. We construct a full binary tree over its values
bottom-up. Given a range (i.e., a sequence of contiguous values) over A, a range covering technique
selects a set of nodes whose subtrees cover the given range entirely. We will describe two techniques,
best range cover (BRC) and uniform range cover (URC). BRC essentially selects the minimum
number of nodes that cover exactly the range (also called minimum dyadic intervals). For range size
R, there are O (logR) such nodes. In Figure 1, for A = {0, . . . , 7}, BRC covers range [2, 7] with nodes
N2,3 and N4,7 (shown in gray).

Consider now range [1, 6] which has the same size as [2, 7]. BRC covers [1, 6] with nodes
N1,N2,3,N4,5 and N6, i.e., with a different number of nodes at different levels. We shall see later that
this leads to extra leakage, since the number of nodes covering a range may imply where an encrypted
range query may or may not be. Motivated by this fact, [47] introduces URC in the context of DPRFs
(explained below). In particular, [47] points out that there is always a worst-case decomposition
of any range of a given size R into a certain number of nodes at certain levels. Interestingly, this
decomposition retains the O (logR) complexity, regardless of where this range is placed over the
domain. Briefly stated, URC starts with the set of nodes output by BRC, and keeps on “breaking”
certain nodes into their two children, until there is at least one node for each level 0, . . . ,max , where
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max is the highest level of nodes in the result. In the example of Figure 1, for range [2, 7], URC
initially invokes BRC and retrieves N2,3 and N4,7. These nodes are at levels 1 and 2, respectively, but
there is no node at level 0. Subsequently, it breaks N4,7 into N4,5 and N6,7, as well as N2,3 into N2
and N3. Now [2, 7] is represented by nodes N2,N3,N4,5,N6,7 (enclosed in boxes in Figure 1), i.e., by
two nodes at level 0 and two nodes at level 1. Observe that [1, 6] is also represented by the same
number of nodes at respective levels. We refer the reader to [47] for further details and for the formal
analysis of URC.

PRFs and DPRFs. A Pseudorandom Function (PRF) family F is a set of functions { fk : A →
B | k ∈ K }, where A,B,F ,K are indexed by a security parameter λ and such that fk (·) is efficiently
computable. The main property of a PRF is that an adversary that does not know the secret key k can
distinguish fk ∈ F from a truly random function only with negligible probability in λ, written as
negl(λ).

A Delegatable PRF (DPRF) [47] is an enhancement of a PRF with an extra property: the party
that knows the secret key k of fk can allow another party that does not possess k to derive DPRF
values for a subset of the domain A. The benefit is performance: the secret holder generates and
outsources a small set of intermediate values, which can be used by an untrusted third party to
produce an exponential number of DPRF values. Similar to a PRF, the intermediate and final DPRF
values appear to be random.

In [47] the DPRF values are computed using the seminal GGM pseudorandom generator [31].
This is defined as G : {0, 1}λ → {0, 1}2λ , i.e., on a λ-bit input x , G (x ) produces two λ-bit outputs
G0 (x ) and G1 (x ) that appear to be random. Let aℓ−1 . . . a0 = a ∈ A be some ℓ-bit domain value. Its
DPRF value using secret key k is computed as fk (aℓ−1 . . . a0) = Ga0 (. . . (Gaℓ−1 (k ))), i.e., k serves
as the seed to successive computations of G. For example, the binary representation of 6 is (110)2.
In Figure 1, observe that 6 is reached by a path starting from the root that chooses right, right and
left. Assigning 0 to left and 1 to right, this path traversal uniquely identifies the binary expression of
value 6. The DPRF of 6 is fk (6) = G0 (G1 (G1 (k ))). The GGM values are organized into binary tree,
hereafter called GGM tree.

The purpose of this particular construction is to permit delegation. Let us focus on range [4-7],
completely covered by node N4,7 in Figure 1. Observe that, givenG1 (k ) and without possessing k , one
can derive all DPRF values for 4-7; G1 (k ) is associated with node N4,7, and all values corresponding
to its descendants can be derived by applying G successively using G1 (k ) as the seed and choosing
the G0 (left) or G1 (right) output based on the path.

When the input range is not covered completely with a single node, it is decomposed into a set
of multiple nodes covering the range (following BRC or URC), and the appropriate GGM values

1 20 3 4 5 6 7

N1N0 N2 N3 N4 N5 N6 N7

N0,1 N2,3 N4,5 N6,7

N0,3 N4,7

N0,7

BRC

URC

Fig. 1. Covering range [2, 7] with BRC and URC
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corresponding to those nodes (paired with the node level) are provided. The receiver of these values
can then easily derive all the DPRFs within the range. The GGM values are called tokens and
produced by a function T that implements BRC or URC, whereas the derivation of the actual DPRF
values (corresponding to the leaves) is performed by a function C. Both T and C are part of the
specification of the DPRF function family. Formally, T is defined as a function that takes as input a
secret key k and a predicate P and outputs a token. As mentioned above, T implements either the
BRC or the URC policy. C is an algorithm that, given a token, outputs a PRF value for every input x
that satisfies the predicate P . For more details, we refer the reader to the original DPRF paper [47].

SSE definitions. Let D be a collection of documents, where a document can be any data item, even
a tuple. Each document d ∈ D has a unique id, which is an alias that allows easy mapping to d.
Every d is also associated with a unique identifier d .id and a set of keywords from a dictionary ∆,
each denoted as d .w . We represent by id (w ) the ids of the documents that contain w and |id (w ) | the
number of documents that contain w . We also define n ≜

∑
w ∈∆ |id (w ) | as the size of dataset D, i.e.,

the number of all (d .id,d .w ) pairs for all d ∈ D. SSE schemes focus on building an encrypted index
I on the document ids. For simplicity, we concentrate only on the ids, since the actual documents are
encrypted independently and stored at the server separately from I ; once some id is retrieved during
search, the server can send the corresponding document to the owner, who decrypts in a final step
that is orthogonal to the SSE instantiation.

An SSE protocol involves an owner and a server and consists of the following algorithms:
k ← Setup(1λ ) A probabilistic algorithm run by the owner before commencing the system. It

takes as input security parameter λ and outputs a secret key k.
I ← BuildIndex(k,D) A probabilistic algorithm run by the owner prior to sending its data to the

server. It takes as input the secret key k and the data collection D, and outputs an encrypted
index I built on the document ids. Index I is sent to the server, along with the actual encrypted
documents.

t ← Trpdr(k,w ) A deterministic algorithm executed by the owner when issuing a query. It takes
as input key k and keyword w , and outputs a token t .

X ← Search(t , I ) A deterministic algorithm run by the server to retrieve the ids of the documents
containing the query keyword. It takes as input a token t corresponding to the query keyword
and the encrypted index I , and outputs a set X of document ids.

In state-of-the-art SSE constructions [12, 13, 16, 18, 40, 41, 62], I is essentially an encrypted
inverted index, which allows efficient retrieval of the document id list corresponding to the query
keyword. The token t constitutes auxiliary information that allows the server to partially decrypt
only the index components that lead to the retrieval of the result ids. However, once these index
portions are decrypted, they become permanently known to the server. In other words, SSE inherently
introduces certain information leakage.

An ad-hoc way of defining security would be to outline a set of adversarial attacks, and prove that
the scheme is robust against these attacks. This is dangerous as we cannot anticipate the types of
attacks an adversary is able to launch. A rigorous way to define security is to formulate the leakage,
and prove that the adversary learns nothing more than this leakage. Curtmola et al. [18] introduced
a framework for achieving this, following the seminal ideal-real paradigm by Goldreich [30]. In
particular, after formulating leakage, we define two games. The real is essentially the execution
of the actual SSE protocol. The ideal is a simulation of the real, i.e., an attempt to “fake” the real
game, knowing only the formulated leakage. Finally, we prove that an adversary can distinguish the
output of the first from that of the second with only negligible probability. Intuitively, this means that
the adversary indeed does not learn anything more than the leakage, otherwise he would be able to
distinguish the real from the ideal execution with non-negligible probability.
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RealSSE,A (k ) IdealSSE,A,S (k )

k ← Setup(1λ )
(D, stA ) ← A0 (1λ ) (D, stA ) ← A0 (1λ )
I ←BuildIndex(k,D) (I , stS ) ← S0 (L1 (D))
(w1, stA ) ← A1 (stA , I ) (w1, stA ) ← A1 (stA , I )
t1 ←Trpdr(k,w1) (t1, stS ) ← S1 (stS ,L2 (D,w1))
for 2 ≤ i ≤ q for 2 ≤ i ≤ q
(wi , stA ) ← Ai (stA , I , t1..ti−1) (wi , stA ) ← Ai (stA , I , t1..ti−1)
ti ←Trpdr(k,wi ) (ti , stS ) ← Si (stS ,L2 (D,w1..wi ))

let t = (t1..tq ) let t = (t1..tq )
output v = (I , t) and stA output v = (I , t) and stA

Fig. 2. SSE ideal-real security game

We focus on semi-honest, adaptive adversaries. “Semi-honest” means that the adversary is curious
to infer information during the execution of the protocol, but does not deviate from the protocol.
“Adaptive” means that the adversary attempts to learn information even in between query executions,
and may adaptively select the next query based on the previous ones. A non-adaptive adversary
submits all queries before starting to learn information. Clearly, adaptive adversaries are more
realistic in database applications where the queries are not presented all at once to a system.

For completeness and to facilitate presentation in Section 3, in Figure 2 we present the SSE ideal-
real games for (semi-honest) adaptive adversaries, as introduced in [19]. In RealSSE,A , an adversary
A interacts with the actual SSE protocol, choosing the initial document set and (adaptively) the
keyword queries. The adversary gets access only to BuildIndex and Trpdr, since it does not know
the secret key k . stA is some state maintained by the adversary. The final view of A is the encrypted
index I , and the set of generated tokens t and stA . Now observe the line correspondence between
RealSSE,A and IdealSSE,A,S . In the latter, a simulator S (maintaining state stS) is enforced with
“faking” BuildIndex and Trpdr for the same D and query keywords, only using leakage functions L1
and L2 (explained below). Security boils down to returning (I , t, stA ) that is distinguishable with
negligible probability from the output by the real game. The challenge lies in properly using leakages
L1 and L2 to create I and t, such that (i) they “look” like those produced by real, and (ii) the Search
algorithm in ideal is consistent, i.e., it functions similarly to that in real.

Although our schemes are independent of the underlying SSE construction, as an example, we
describe the leakage functions L1,L2 assuming the SSE scheme by [13]. L1 is associated with what
is leaked from the index alone, whereas L2 accounts for the leakage from the queries.
• L1 (D) = n, where n is the size of D.
• L2 (D,W ) = ⟨α (W ),σ (W )⟩,

whereW is a set of keywords, α (W ) = (id (w ))w ∈W is the access patterns, i.e., the document
ids returned by each keyword query, and σ (W ) is the search patterns, i.e., for every pair
wi ,w j ∈W such that i , j, it indicates whether wi = w j or wi , w j .

Cash et al. [11] introduced a family of attacks known as the known-document attacks. The
effectiveness of these attacks was further improved by Zhang et al. [69]. These attacks require that
the untrusted adversary has the ability to inject files to the encrypted index. Then, by exploiting the
L2 leakage (access and search patterns), the adversary can learn all the clientsâĂŹ query keywords.
However, these attacks are inapplicable to our setting, where only the trusted owner/client has
permission to update the encrypted index (insert/modify/delete tuples).

SSE constructions. There exist numerous SSE constructions in the literature, which are essentially
variations of a secure inverted index for keyword search. In Table 2 we list the most representative
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Table 2. Comparison of the most representative SSE schemes

Scheme Storage Locality Read Efficiency
Locality Non-aware

Curtmola et al. [18] (SSE-1) O (n) O (r ) O (1)
Curtmola et al. [18] (SSE-2) O (nm) O (r ) O (1)
Liesdonk et al. [67] O (nm) O (r ) O (1)
Kamara et al. [41] O (n) O (r ) O (1)
Kamara et al. [40] O (nm) O (r logn) O (n logn)
Cash et al. [13] O (n) O (r ) O (1)
Cash et al. [12] O (n) O (r ) O (1)
Stefanov et al. [62] O (n) O (r log3 n) O (log3 n)

Locality Aware
Cash et al. [14] O (n logn) O (logn) O (1)
Asharov et al. [2] (Approach #1) O (n) O (1) O (logn log logn)
Asharov et al. [2] (Approach #2) O (n) O (1) O (log logn log2 log logn)*
Asharov et al. [2] (Approach #3) O (n logn) O (1) O (1)
Demertzis and Papamanthou [23] O (n · s ) O (n1/s/L) O (L)
Demertzis et al. [21] O (n) O (1) O (log0.67 n)

Lower Bound
Cash and Tessaro [14] ω (n) O (1) O (1)

* It is based on the assumption that all keyword lists, in the dataset have size less than n1−1/ log logn .

n: dataset size, m: number of keywords, r : result size

ones, grouping them into two categories, which we call locality non-aware and locality aware (the
meaning of locality will become clear soon).

Figure 3 facilitates explaining the difference between the two categories. In the first category
(locality non-aware), the owner’s (encrypted) documents are placed in random locations in the
server’s storage (main memory or disk). This is due to the way the secure index is constructed in
each SSE scheme. The upper part of Figure 3 illustrates the way the documents that contain keyword
w are randomly placed in the server’s storage. Note that this random placement is important for
providing provable security. Upon issuing query keyword w , the owner sends a token t to the server.
The latter uses t to identify the random locations that store the results (through at least one PRF
computation per result), and decrypt them before returning them to the owner. These approaches
suffer from two drawbacks: (i) Since the results of any keyword appear in random locations in the
server’s storage, retrieving them with random accesses may incur an excessive overhead (especially
if the server uses a spinning disk for storage). (ii) If the query returns r documents, the server needs
to perform at least r PRF computations, whose cost may become considerable for large r . The SSE
methods in this category do not preserve any locality for the results of each keyword and, thus, we
term them as locality non-aware.

The second category (locality aware) of SSE schemes targets at addressing the above mentioned
problem by providing result locality. Formally, locality is defined as the number of look-ups required
to retrieve the result for any keyword. Optimal O (1) locality is achieved when a single look-up is
required to identify the storage location of the first result of keyword w , after which a single scan
suffices for retrieving all the subsequent results. This is demonstrated in the lower part of Figure 3.
Observe that (i) the results are all located in contiguous locations in the server’s storage, and (ii) the
server performs a single PRF to locate the first result.

Unfortunately, optimal locality is very challenging to achieve while providing provable security.
Specifically, in order to achieve optimal locality, a SSE scheme must either sacrifice storage space,
or read redundant information. The latter is formally defined as read efficiency, i.e., the expansion
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Owner Server

ttoken

for keyword w

Locality non-aware SSE schemes

d1 d2 d3

PRF

PRF
PRF

Locality aware SSE schemes

Encrypted documents 
containing keyword  w

Owner Server

ttoken

for keyword w
d1 d2 d3

PRF

Encrypted documents 
containing keyword  w

scan

Fig. 3. Locality non-aware vs. locality aware SSE schemes

factor γ of the information to be retrieved when answering any keyword query (i.e., γ · r results
are returned instead of the actual r ). In other words, read efficiency quantifies the number of false
positives. Optimal O (1) read efficiency is achieved if O (r ) documents are returned when the result
size is r . Cash and Tessaro [14] proves an interesting lower bound: a secure SSE scheme with optimal
locality and read efficiency requires superlinear storage cost (this is shown at the bottom of Table 2).

Among the locality aware SSE schemes, we are particularly interested in Approach #3 of Asharov
et al. [2], which provides optimal locality and read efficiency at the cost of increased storage. We
explain this technique using Figure 4. Recall that n is the size of the document collection (i.e., the
number of all keywords in all documents, counting multiplicities across documents). The scheme
creates l = logn + 1 arrays A0, . . . ,Al , each of size n (the actual scheme uses hash tables, but here
we use arrays for ease of demonstration). Array Ai consists of n/2i chunks (shown as rectangles
in the figure), and each chunk stores a randomly chosen keyword result of size 2i (appropriate
padding is applied in case a result size is not a power of 2). An additional dictionary stores the chunk
corresponding to each keyword. The total space required for this scheme is O (n logn).

In Figure 4, suppose that w1 has results d1,d2 and w2 has result d3. The result of w1 is randomly
placed in a chunk of A1, whereas the result of w2 is randomly placed in a chunk of A0. The owner’s
token for a keyword enables the server to look up the appropriate entry in the dictionary, and retrieve
the starting location of the chunk that contains the result. The server then scans the chunk to retrieve
the query result. Since only a single look-up is involved and each chunk contains O (r ) items (where
r is the actual result size), this scheme provides optimal locality and read efficiency, at the cost of
extra storage.

Range-Sum Query (RSQ). Given an array A of n numbers (with indexing starting from 0) and a
range [i, j], the Range-Sum Query (RSQ) returns the sum of the elements inA[i ..j], i.e., RSQ (A, [i, j]) =∑j

k=i A[k]. A trivial way to answer this query is by accessing all elements in A[i ..j] and simply
summing them up. The query time in this case is O (r ), where r = j − i + 1 is the range size.

A more efficient way to answer the RSQ query is with the use of prefix sums [4]. The prefix sums
of an array A of n numbers is a n-element array P , where P[i] =

∑i
j=0A[j]. In other words, element

P[i] stores the sum of element A[i] and the elements that precede A[i]. In the example of Figure 5,
P[2] = A[0] + A[1] + A[2] = 15. Observe that P[i] can be calculated as P[i] = P[i − 1] + A[i].
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Dictionary

d1 d2

d3A0

A1

A2

A3

w1

w2

Fig. 4. Approach #3 of [2]

Therefore, P can be constructed in O (n) time while consuming O (n) space. Using the prefix sums,
RSQ can be answered in O (1) time, simply as RSQ (A, [i, j]) = P[j] − P[i − 1] when i , 0, and
RSQ (A, [0, j]) = P[j]. In Figure 5, RSQ (A, [3, 7]) = P[7] − P[2] = 21.

A

1 234 5 6 78

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Prefix sums P

P [2] = 15

P [7] = 36

RSQ(A, [3, 7]) = P [7]− P [2] = 21

4 12 15 16 21 27 29 36

Fig. 5. RSQ example for range [3,7] on A

Range-Minimum Query (RMQ). Given an array A of comparable objects and a range [i, j], the
Range-Minimum Query (RMQ) returns the element from A with the minimum value within the
subarray A[i ..j]. For example, let A = [4, 8, 3, 1, 5, 6, 2, 7] and assume that the array indexing starts
from 0. Query RMQ (A, [1, 5]) returns A[3] = 1, which is the minimum element in subarray A[1..5].

There exist several approaches to solving RMQ (e.g., see [25] and the related work therein). We are
particularly interested in the sparse table technique from [3], which incursO (n logn) precomputation
time and space, and O (1) query time, where n is the length of array A. This scheme precomputes
O (logn) RMQ queries starting from every element of A whose range size is a power of 2. It stores
these values in a 2D array M , where each element M[i][l] contains RMQ (A, [i, i + 2l − 1]), i.e.,
the minimum element in A[i ..i + 2l − 1]. For example, in Figure 6, M[1][2] = RMQ (A, [1, 4]) = 1,
whereas M[2][2] = RMQ (A, [2, 5]) = 1. The total space of M is O (n logn). Observe that each
M[i][l] = RMQ (A, [i, i + 2l − 1]) can be computed as the minimum of RMQ (A, [i, i + 2l−1 − 1]) and
RMQ (A, [i + 2l−1, i + 2l − 1]) in O (1) time. In other words, if we compute M[i][l − 1] first for every
i ∈ [0,n − 1] before we compute M[i][l], then the precomputation time becomes O (n logn).

Array M can be used to answer an RMQ query for range [i, j] by accessing exactly two elements as
follows. First, we calculate l = ⌊log(j − i + 1)⌋ and observe that [i, j] is covered by two overlapping
ranges, namely [i, i + 2l − 1] and [j − 2l + 1, j]. In Figure 6, l = ⌊log(7 − 3 + 1)⌋ = 2 and range
[3, 7] is covered by ranges [3, 3 + 22 − 1] = [3, 6] and [7 − 22 + 1, 7] = [4, 7]. Also we observe
that RMQ (A, [3, 7]) = min(RMQ (A, [3, 6]),RMQ (A, [4, 7])), since the fact that the two ranges are
overlapping does not affect the minimum result value in the union of the ranges. However, we have
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A

1 234 5 6 78

M
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1

1
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2
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2
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7

RMQ(A, [3, 7]) = min(M [3][2],M [4][2]) = 1

M [4][2] = 2

M [3][2] = 1

0 1 2 3 4 5 6 7

First axis

Second axis

Fig. 6. RMQ example for range [3,7] on A

precalculated RMQ (A, [3, 6]) and RMQ (A, [4, 7]) in M as elements M[3][2] and M[4][2] (as shown
in the figure), respectively, which we can access in constant time. Therefore, to conclude, with
O (n logn) preprocessing time and space we can answer RMQ queries in O (1) time.

3 PROBLEM DEFINITION
We define the problem of Range Searchable Symmetric Encryption (RSSE) in a very similar manner
to SSE. In fact, the security game of RSSE is identical to that of SSE in Figure 2, where each wi
stands for a range query rather than a keyword. Moreover, similar to SSE, RSSE captures index-based
schemes in its game; this is different from OPE that formulates a secure encryption scheme that
allows ordered comparisons, without the need of an index. We employ this definitional framework to
devise solutions that reduce range query search to multi-keyword search. This further allows us to
build secure solutions on top of an existing secure SSE construction.

More specifically, we assume that data owner possesses a dataset D of tuples. We focus on range
queries on a single attribute with domain A2. We associate a pair (id,a) with each tuple d ∈ D, where
id is a unique identifier for d and a is the value of d on A. We also write d .id and d .a to refer to the
elements of this pair. We assume that the owner encrypts each d ∈ D using a semantically secure
encryption scheme, and sends the resulting ciphertext c along with d .id to the server. The goal is to
build a secure index I on the d .id values, such that the server can perform range queries that retrieve
the set of ids of the tuples satisfying the query. Note that, for each returned result d .id, the owner
can retrieve from the server the corresponding ciphertext c of d and decrypt it in a subsequent step,
orthogonal to the search process. In a nutshell, our RSSE framework can be summarized as follows:

• Index creation: Break A into a set of (potentially overlapping) ranges, and attribute a unique
keyword to every range. Regard each d ∈ D as a document, and associate it with the keywords
of the ranges that include d .a. We hereafter use terms document and tuple interchangeably.
Utilize a static SSE scheme to securely index D using as dictionary ∆ the union of the range
keywords of every d ∈ D.

2We assume that the values of A are positive integers. Note that we can always convert any real domain to a discrete positive
one by proper scaling and translation.
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• Query: Break the query range into sub ranges, map them to keywords and generate tokens for
searching the SSE index3.
• Security: Augment the leakage functions L1 and L2 of the underlying SSE scheme to capture

the extra leakage stemming from the keyword mapping and index structure and we prove
that an RSSE scheme is (L1,L2)-secure using the security definition/game for SSE schemes
presented in section 2.2. It is out-of-the-scope of this paper to perform a leakage analysis,
since it is a very complex procedure that is based on all the possible attacks that leverage the
proposed leakages. Instead, we design schemes with a goal to minimize the leaked information.
• Updates: Perform updates in batches. For every batch, create a separate index using new

keys. Periodically, consolidate separate indexes into a single one (consolidation is performed
hierarchically, similar to log-structured merge trees [48]). This requires the owner to download
the involved indexes, and create a single (re-encrypted) index. The server must issue every
range query on each “active” index, and return the separate result sets.

An RSSE protocol is specified by algorithms Setup, BuildIndex, Trpdr and Search, which are
defined identically to those described in Section 2.2 for static single-keyword SSE, where w now
stands for the query range. Their instantiation in each of our proposed schemes varies, but builds
upon the constructions of traditional SSE. Our contribution revolves around the proper assignment of
keywords to tuples in BuildIndex, the mapping of a range query to keywords/tokens in Trpdr, and
potentially the adjustment of Search to function appropriately with the tokens of Trpdr.

We support updates using only static SSE schemes. Our goal is forward privacy, i.e., the server
should not learn that a newly added item satisfies a query issued in the past. Our mechanism is
generic capturing all schemes and, thus, is detailed separately in Section 9.

Our RSSE schemes can build upon any SSE scheme. In order to provide context, in Sections 4-6
we assume that our methods use the SSE scheme of [13]4, which is locality non-aware. In Section 7,
we discuss in detail how to attribute locality to our RSSE solutions by utilizing a locality aware SSE
scheme such as [2] instead.

In addition to range queries that return the ids of the qualifying tuples, we also target at another
query type, namely range aggregates. A range aggregate query returns an aggregate value (instead
of the tuple ids) over the tuples that satisfy a specified query range. For the sake of generality, we
assume that the range predicate is applied on attribute A, whereas the aggregate value is computed
over a potentially different attribute B. In SQL syntax, our targeted range aggregate query is defined
as follows:

SELECT agg(B)
FROM D
WHERE A >= l AND A <= u

The aggregate functions agg we focus on are sum, count, avg, min, and max. In Section 10 we
initially design secure schemes for sum and min, but subsequently show that these can be modified
to support all the above aggregate functions, and even more complex aggregate queries such as top-k
and bottom-k. We explain that a range aggregate scheme follows the same framework as RSSE,
i.e., it entails a secure index construction, a token and search algorithm upon a query, a practically
identical security game, and support for updates.

3An RSSE scheme supports empty range queries; if the client sends a token to the server that does not match any keyword
inside the index, the server returns a null value.
4The SSE scheme proposed by Cash et al. [13] is not the most efficient SSE at this moment. In fact, using as a black-box any
of the schemes presented in the recent paper of Demertzis and Papamanthou [23] will drastically improve the efficiency of
the proposed RSSE by at least 4 orders of magnitude — we refer the reader to the recent paper of [23] for a comprehensive
comparison of the state-of-the-art SSE schemes.
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Fig. 7. Dataset used as a running example

Throughout the rest of the paper, we will be using the dataset D shown in Figure 7 in our examples
(where A is the range query attribute, and B the aggregate query attribute).

4 QUADRATIC SCHEME
Our Quadratic scheme is a naive baseline whose sole purpose is to help in conveying the basics of
our RSSE framework. Let A be the query attribute domain, and m its total size. There are O (m2)
possible range queries that can be applied in this domain. We enumerate all these possible sub ranges
of A and assign a unique keyword to each range. Observe that a domain value belongs to O (m2) sub
ranges. We associate each d ∈ D with the keywords corresponding to the O (m2) ranges covering
d .a ∈ A.

We start by replicating each d ∈ D into d ′1, . . .d
′
ν , where ν is the number of keywords d corresponds

to, and include the replicated tuples in a new dataset D ′. We then use any secure (single-keyword)
SSE scheme off-the-shelf (i.e., without any changes), treating each d ′ ∈ D ′ as a separate tuple. The
Setup and BuildIndex algorithms are identical as in the SSE scheme, where the tuples in D ′ are
now augmented with the keywords described above. Given a range query, Trpdr simply maps it to
the single keyword associated with its range, and the rest of the algorithm is the same as in the SSE
scheme. Finally, Search is also used as in SSE without changes, and returns exactly the tuples in
D ′ containing the range keyword. By definition, the returned tuples are exactly those satisfying the
range query (without replication).

Table 1 in Section 1 shows the costs of Quadratic. Each tuple is associated with at most O (m2)
keywords and, hence, the index size is O (nm2), where n is the number of tuples in D. The search
time is inherited from the SSE scheme, and assuming [13] this is O (r ), where r is the number of
results. The query size is O (1) as it involves a single keyword/token.

In terms of security, this technique does not introduce any additional leakage to what SSE reveals
for D ′, namely its size. However, this may disclose information about the distribution of the values
of D on A; two datasets with different distributions (e.g., one where all tuples have the same d .a
value, versus one where they all have a different one) will result in different D ′ sizes. This can
be easily tackled by padding (e.g., as in [12, 18]); for any D ′, the mechanism takes as input the
cardinality n of D and the domain size m, and always constructs a secure index corresponding to the
maximum possible D ′ size. Hence, only n,m are leaked in Quadratic in L1 along with the L2 leakage
of the underlying SSE scheme, which results in the highest security level for our setting. However,
Quadratic clearly suffers from a prohibitive storage cost, which motivates our next solutions.

5 CONSTANT SCHEMES
In this section we present our Constant-BRC and Constant-URC schemes, which lie on the other
side of the spectrum as far as the storage cost is concerned. Specifically, these techniques introduce a
constant asymptotic overhead on the index size with respect to the dataset size n. Before embarking
on their description, we first explain a naive variant.

We assign to each tuple d ∈ D a single keyword, which corresponds to its actual value on A,
namely d .a. In other words, the dictionary ∆ is the values in A. No replication is involved. We then
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index D with an SSE scheme5, yielding an index I of size O (n). A query range of size R is simply
mapped to R keywords, one for each value of A it covers. We trivially use these keywords as search
tokens in the Trpdr and Search algorithms of the SSE scheme. The scheme will return the correct r
results without false positives in O (R + r ) time. Disregarding security for now, the main drawback of
this scheme is the potentially unacceptable query size O (R) for very large ranges. This motivates our
Constant-BRC and Constant-URC solutions, which take advantage of DPRFs (explained in Section
2.2) to reduce the query size to O (logR).

The instantiations of the RSSE algorithms for Constant-BRC and Constant-URC are the following
(the two algorithms differ only in the range covering technique used for generating the trapdoor –
BRC or URC):

k ← Setup(1λ ) Output (k1,k2), where k1 is a DPRF key and k2 is the key of the underlying SSE
scheme.

I ← BuildIndex(k,D) Associate each d ∈ D with keyword d .a. Invoke the BuildIndex algorithm
of the SSE scheme on D and its keywords, but instead of using a PRF to encrypt the ids, use a
DPRF instead. Each d .id is decrypted only with token fk (d .a), where fk is a DPRF function.

t ← Trpdr(k,w ) Invoke the token generation function (T ) of the DPRF employing either BRC or
URC, and retrieve the corresponding GGM values corresponding to range w from the GGM
tree over A (see Section 2.2). Randomly permute these GGM values and output them as vector
t . For each GGM value in t , provide the level of its respective node in the GGM tree as well.

X ← Search(t , I ) Derive the (leaf-level) DPRF values from the GGM values in t . Use these
values as tokens in the Search algorithm of SSE and return the results.

We clarify the algorithm revisiting the example of Figure 1, where A = {0, . . . , 7}. The owner first
generates a DPRF key k1 in Setup, and computes the DPRF values for the elements on A that appear
in D, creating a GGM tree. Suppose that a d ∈ D has d .a = 6. In BuildIndex, the owner assigns 6 as
keyword to d . However, contrary to traditional SSE where this document can be decrypted by using
as token a PRF value on keyword 6, Constant-BRC/URC use a DPRF value instead. Specifically,
they invoke the same BuildIndex algorithm as SSE (using SSE key k2 generated in Setup), but the
token to decrypt d (or any other tuple d with d .a = 6) is fk1 (6) = G0 (G1 (G1 (k1))). The algorithm
proceeds similarly with every other d ∈ D.

Upon a query, Trpdr outputs as token t the GGM values corresponding to the nodes covering
the range with BRC or URC. In our example in Figure 1, if BRC is used, then the output is
t = ⟨(G1 (G0 (k1)), 1), (G1 (k1), 2)⟩, i.e., the GGM values of nodes N2,3 and N4,7 along with their levels,
respectively. If URC is used, then t contains (G0 (G1 (G0 (k1))), 0) for node N2, (G1 (G1 (G0 (k1))), 0) for
N3, (G0 (G1 (k1)), 1) for N4,5, and (G1 (G1 (k1)), 1) for N6,7. Note that the elements of t are randomly
permuted.

In Search, the server first takes the GGM values of the non-leaf nodes and expands them to
compute the DPRF values for the leaves. For instance, from N2,3’s value G1 (G0 (k1)), it generates
DPRFs G0 (G1 (G0 (k1))) and G1 (G1 (G0 (k1))). It can do that because (i) G is public, and (ii) it knows
the level of G1 (G0 (k1)), i.e., 1. It finally uses as tokens the DPRFs to retrieve the results, invoking
SSE’s Search algorithm.

The cost complexities of Constant-BRC and Constant-URC are identical and provided in Table 1.
Each tuple is associated with a single keyword and, hence, the storage cost is O (n). Due to the
BRC/URC techniques, the query size is O (logR) for a range size R. The search time at the server
entails expanding the O (logR) GGM values into R DPRFs, and retrieving the r results from SSE,
yielding a total O (R + r ) time. Both solutions do not introduce false positives.

5Constant schemes can be built with SSE schemes that utilize a PRF as a cryptographic primitive to encrypt the index,
compute the token and perform the search.
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We next turn to security. Our Constant constructions cannot be proven secure against adaptive
adversaries that are allowed to issue intersecting range queries. This is an inherent limitation of
our underlying DPRFs, as shown in [47]. Briefly stated, this is because the simulator must have a
priori knowledge of the GGM sub-structure shared by the intersecting ranges, in order to produce
consistent tokens. However, this is not possible in the adaptive case. In the example of Figure 1,
suppose that some query generated a token that includes the GGM value for node N2,3. Then, let
another query involve producing as token a GGM value for node N2. Without the a priori knowledge
that the second range intersects the first at N2, the simulator could not have generated the GGM value
for N2,3, in a way that it can produce the GGM value for N2.

Consequently, the Constant schemes limit the functionality by not allowing query intersections.
Note that this constraint can be enforced at the application level. For instance, the owner’s program
may maintain the history of queries and abort when an intersecting query is seen, or may try to
answer the query from cached answers of previous queries that collectively encompass the new query
range.

To prove security (under the constraint of non-intersecting queries), we define the two leakages as
follows:

• L1 (D,A) = ⟨n⟩
D is the dataset, A is the query attribute domain, n is the cardinality of D.
• L2 (D,A,W ) = ⟨α (W ),σ (W ), ((µ (Ni ), ℓ(Ni ), idmap (Ni ))Ni ∈RC (w ) )w ∈W ⟩
α (W ),σ (W ) are the access and search patterns of the queries as defined for SSE. The extra
leakage is as follows. For every query range w ∈W , the leakage contains a tuple that consists
of an alias µ (Ni ) for every node Ni returned by the range covering RC (w ) – where the RC
function is either BRC or URC – along with the level ℓ(Ni ) of Ni , and the exact mapping
idmap (Ni ) of the tuple ids to the leaves of µ (Ni )’s sub tree.

Observe that, contrary to traditional SSE, the two leakage functions take as input also the query
attribute domain A. This is because our constructions build an index considering the entire span of
A. We further explain the extra leakage in L2 (D,A,W ) incurred by our schemes with an example
using Figure 1. Let the first query be w1 : [0, 3], with results d1,d2, such that d1.a = 0 and d2.a = 3.
Then, L2 overW = {w1} is an alias for node N0,3, its level (2), and the information that d1 maps to its
left-most leaf, and d2 to its right-most leaf. Now suppose that the second query is w2 = [5, 7]. Then,
L2 overW = {w1,w2} is what explained above, plus aliases for nodes N5,N6,7 (without disclosing
their relative order) as well as the mappings of the qualifying tuples in these sub trees. Note that,
neither the relative order of w1,w2 on A, nor the relative order of the sub trees of each query are
revealed. We include the security theorem and proof of Constant BRC/URC in Appendix A.1.
Qualitative comparison. The Constant schemes feature considerably better storage than Quadratic
(at the expense of slightly increased query size and search time). However, they also introduce a
significantly higher leakage, since now the structure of the subtree, the number of leaves, and the
encrypted tuples of each leaf in the subtree, are all leaked. Consequently, the aforementioned leakages
further reveal information about the relative order of the encrypted tuples. Comparing the BRC and
URC variants, URC offers slightly better privacy; the BRC coverage may exclude mapping certain
ranges to the query, whereas URC covers all ranges of the same size in an indistinguishable manner.

6 LOGARITHMIC SCHEMES
Motivated by the high structural leakage of the Constant schemes, in this section we design solutions
that trade off storage for privacy. This is achieved by replicating tuples similar to Quadratic, but with
a significantly lower expansion factor. Specifically, we present five constructions that increase the
storage complexity only by a logarithmic factor.
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The constructions rely on the common idea of covering the query attribute domain with dyadic
intervals of different lengths, which are conceptually organized in a hierarchy, and associating
each tuple with all intervals that cover its attribute value. Queries are then executed by retrieving
and combining a small number of intervals. The five constructions differ on how they construct
these intervals and how they choose the intervals to be retrieved during query execution, leading to
differences in their achieved levels of security and efficiency (expressed in terms of the total querying
cost and the retrieved number of false positives). In particular:

• The Logarithmic-BRC and Logarithmic-URC schemes, described in Section 6.1, transform the
query to the same (logarithmic in number) dyadic intervals as in Constant BRC/URC. We will
explain that the added security stems from avoiding the use of DPRFs and from associating
each tuple with a logarithmic, instead of constant, number of keywords. Both schemes rely on
a single round of communication between the owner and the server for the query execution
and return no false positives.
• The Logarithmic-SRC scheme, introduced in Section 6.2, covers a query range of size R with a

single interval of dyadic size O (R), using a novel TDAG graph that we introduce. This scheme
also relies on a single round of communication between the owner and the server for the query
execution, but introduces false positives because the used interval may be larger than the query
interval.
• In order to reduce the number of false positives of the Logarithmic-SRC scheme, we then

present in Sections 6.3 and 6.4 the Logarithmic-SRC-i1 and Logarithmic-SRC-i2 schemes,
respectively. Both of these schemes are interactive, requiring two rounds of communication,
utilize two indexes, and may return false positives. The data is stored at the TDAG2 index after
appropriate sorting and shuffling. The first index (TDAG1 in Logarithmic-SRC-i1, or an array
in Logarithmic-SRC-i2) is smaller and helps map each query range to a query range at TDAG2
(thus, it is queried first). This query range is then transformed, by the owner, to another single
dyadic range that covers it, and the second part of the query is issued to the server. The two
schemes differ in their first index and the way that they are built and queried.

6.1 Logarithmic-BRC/URC
The Logarithmic-BRC and Logarithmic-URC schemes mitigate the structural leakage of Constant-
BRC/URC by avoiding the use of DPRFs and associating each tuple with a logarithmic, instead of
constant, number of keywords. The RSSE protocol for Logarithmic-BRC and Logarithmic-URC is
as follows (the two schemes again differ in the range covering technique used in Trpdr):

k ← Setup(1λ ) Same as in SSE.
I ← BuildIndex(k,D) Build a binary tree over domain A as described in Section 2.2, and assign

a unique keyword at each node. For each tuple d ∈ D, find the nodes on the path from the tree
root to d .a, and associate d with the node keywords. Replicate every d for each keyword it is
associated with, and regard each replica as separate tuple as discussed in Quadratic. Let D ′ be
the resulting dataset including all the replicas. Invoke the BuildIndex algorithm of the SSE
scheme on D ′ and its keywords, after randomly permuting the documents that are associated
with the same keyword.

t ← Trpdr(k,w ) Let w represent the query range. Find the nodes that cover w using BRC or
URC. Create a token for each node keyword invoking the Trpdr algorithm of the SSE scheme
and include it in t . Randomly permute t prior to returning it.

X ← Search(t , I ) Invoke the Search algorithm of SSE for every element in t , and output the
union of the results.
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The protocol associates each tuple with the dyadic intervals that cover its attribute value. For
instance, if d .a = 3 in Figure 1, then d is associated with keywords N0,7, N0,3, N2,3 and N3 (where
each Ni is the label of a node). We then replicate each d and index the augmented dataset D ′ with
traditional SSE. Given a range query, we compute its cover with BRC or URC, and issue the output
node labels of the range covering technique as keywords for traditional SSE search, i.e., we invoke
the conventional Trpdr and Search algorithms of SSE for every node label and corresponding token,
respectively. For example, for query [2, 7] under BRC, Trpdr outputs an SSE token for N2,3 and N4,7
in random order, and the Search SSE algorithm is invoked for every such token separately.

The costs of Logarithmic-BRC and Logarithmic-URC are summarized in Table 1. The index size
is O (n logm), where n is the number of tuples and m the domain size, since each tuple is associated
withO (logm) keywords. The query size isO (logR), where R is the size of the query range, since this
is the number of nodes covering the querying range in BRC and URC. The search time isO (logR+r ),
where r the result size, because there are logR tokens issued to the underlying SSE scheme, each
incurring no additional cost to the retrieval of its results. Finally, the protocol returns correct answers
without false positives, since BRC and URC cover the query exactly, and a tuple in the result is
certainly associated with the keyword of a node in the cover.

The only extra information leaked is a partitioning of the result ids into groups. More formally:
• L1 (D,A) = ⟨m,n⟩
D is the dataset, A is the query attribute domain, n is the cardinality of D, andm is the size of
A.
• L2 (D,A,W ) = ⟨α (W ),σ (W ), ((µ (Ni ), id (Ni ))Ni ∈RC (w ) )w ∈W ⟩
α (W ),σ (W ) are the access and search patterns of the queries as defined for SSE. For every
query range w ∈W , the leakage contains a tuple that consists of an alias µ (Ni ) for every node
Ni returned by the range covering RC (w ) – where the RC function is either BRC or URC –
along with the list of tuple ids id (Ni ) associated with keyword Ni .

We include the security theorem and proof of Logarithmic BRC/URC in Appendix A.2.

Qualitative comparison. Logarithmic-BRC/URC feature increased storage cost compared to Constant-
BRC/URC, but a better search time (since the server does not need to generate DPRFs from the
tokens). The main benefit of Logarithmic-BRC/URC is in the substantially reduced leakage, since
they hide both the distribution and the total order of the tuples in each subtree of the query range cover.
The difference between the BRC and URC variants of Logarithmic is similar to that in Constant;
URC does not disclose information about the position of the range over the domain. Nevertheless,
what is still leaked in both variants is the partitioning of the result tuples into distinct groups (each
corresponding to a subtree), which may further disclose ordering information about the groups. This
motivates our solution in the next section.

6.2 Logarithmic-SRC
The extra “result partitioning” leakage of the Logarithmic-BRC/URC schemes was due to the fact
that Trpdr produces multiple tokens, one for each subtree with which BRC or URC cover the query
range. Logarithmic-SRC, prevents this leakage by always covering the query range with a single
range that is potentially a superset of the query range (SRC stands for single range cover). In addition
to enhanced privacy, this also leads to constant query size, but may introduce false positives.

We can naively realize Logarithmic-SRC building upon the same binary tree over A as in
Logarithmic-BRC/URC as follows. We assign once again to each d ∈ D the keywords corre-
sponding to the nodes whose subtrees cover d .a, and replicate tuples to create an augmented dataset
D ′. However, instead of invoking BRC or URC in Trpdr to find the cover of the query range with
tree nodes, we could simply select the node of the smallest subtree fully covering the query, and use
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its keyword for searching. In our example of Figure 1, we would cover query [2, 7] with the tree root
N0,7. Unfortunately, this solution features an unacceptable worst-case complexity for the number of
leaves (i.e., domain values) contained in the single subtree, which is O (m) wherem is the domain
size, regardless of the query range size R. This would further lead to an unacceptable number of
false positives. For example, in Figure 1, query [3, 4] is covered by the tree root that encompasses
the entire domain and, hence, dataset D. Motivated by the above, in Logarithmic-SRC we produce
keywords for the tuples in D based on a novel tree-like Directed Acyclic Graph, henceforth referred
to as TDAG, which ensures that any query range of size R is covered by a single subtree with size
O (R).

We explain the TDAG structure using Figure 8. We start by building a binary tree over domain A,
similar to the case of the previous schemes. We then inject one extra node between every two nodes
at every level of the tree (depicted in gray), and connect it with the two nodes directly below it in the
next level (i.e., the right child of the node in its left, and the left child of the node in its right).

1 20 3 4 5 6 7

N1N0 N2 N3 N4 N5 N6 N7

N0,1 N2,3 N4,5 N6,7

N0,3 N4,7

N0,7

N1,2 N3,4 N5,6

N2,5

Fig. 8. TDAG example

The following lemma is useful for our cost analysis of Logarithmic-SRC.

LEMMA 6.1. Given a TDAG constructed over a domain A and any range in A of size R, there is
always a subtree of size O (R) that can completely cover the range.

PROOF. For any integer R > 0, there is an integer j ≥ 0 such that 2j ≤ R ≤ 2j+1. Any range of size
R can be covered by at most 2 dyadic ranges (i.e., subtrees in the binary tree over A) of size 2j+1;
either the range is fully contained in such a subtree, or it is split between two consecutive subtrees
of size 2j+1. These two subtrees are either children of the same parent in the binary tree, or cousins.
Recall that our TDAG structure essentially links every two cousins in each level with a new parent.
Hence, there is always a node that covers the two subtrees each of size 2j+1 ≤ 2R. Thus, for any
range of size R, there is always a subtree in TDAG with size at most 4R ∈ O (R). □

Given a range of size R, the SRC range covering algorithm simply finds the lowest common
ancestor of the lower and upper bound of the range, which can be performed in O (logR) time. In the
example of Figure 8, SRC covers range [2, 7] by N0,7, and range [3, 5] by N2,5.

The RSSE algorithms for Logarithmic-SRC are the same as in Logarithmic-BRC/URC with the
following differences: (i) in BuildIndex, each d ∈ D is associated with the keywords/labels of the
nodes of TDAG that cover d .a (instead of the nodes of the binary tree), and (ii) Trpdr generates a
single token for the node label output by the SRC covering technique (instead of BRC/URC).

Table 1 summarizes the costs of Logarithmic-SRC. The query size is constant, since the query
is represented by a single token. The index has size O (n logm); for each tuple d ∈ D, there are
O (logm) nodes in the path from the root to d .a, and each such node is connected to at most one
injected node in the TDAG; the subtrees of all these O (logm) nodes cover d .a and, thus, each d is
associated with O (logm) keywords. The false positives depend on the dataset distribution over A.
If the distribution is uniform, then the false positives are O (R) due to Lemma 6.1. However, if the
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dataset is skewed, then the false positives could be up to O (n). For example, if [3, 5] is the query in
Figure 8 and there is a single tuple that satisfies the range, but the rest of the dataset has value 2 on A,
then Logarithmic-SRC will return the entire dataset due to the used keyword N2,5. The search time is
linear in the result size plus the false positives and, thus, it is O (n) in the worst case where there is
heavy skew.

In Logarithmic-SRC, any range query is reduced to a single-keyword query. Thus, Logarithmic-
SRC degenerates to a traditional SSE scheme, inheriting its security (assuming the padding technique
discussed in Quadratic). However, for technical reasons in our proofs, we must define an extra subtle
leakage, namely the fact that two different ranges may map to the same keyword (e.g., [0, 2] and
[0, 3] in Figure 8). This can be modeled by extending the definition of search patterns. Nevertheless,
from a practical point of view, this leakage is not observable by an adversary, since the mapping
takes place at the owner. In particular, the adversary is unable to distinguish if the same token was
produced twice for the same or for different range queries.

We describe the leakage of Logarithmic-SRC more formally:

• L1 (D,A) = ⟨m,n⟩
D is the dataset, A is the query attribute domain, n is the cardinality of D, andm is the size of
A.
• L2 (D,A,W ) =
⟨α (W ),σ (W ), (µ (RC (w )), id (RC (w ))
α (W ),σ (W )⟩ are the access and search patterns of the queries as defined for SSE. For every
query rangew ∈W , the leakage contains a tuple that consists of an alias µ (RC (w )) for the node
returned by the range covering RC (w ), along with the list of tuple ids id (RC (w )) associated
with keyword RC (w ).

We include the security theorem and proof of Logarithmic-SRC in Appendix A.3.

Qualitative comparison. Contrary to Logarithmic-BRC/ URC, in Logarithmic-SRC the adversary
is unable to infer ordering information about the results, since each range is mapped to a single
keyword and the tuples associated with this keyword are randomly permuted. Logarithmic-SRC also
features optimal query size and the highest achievable privacy in our RSSE framework that builds
upon single-keyword SSE. Similar to Logarithmic-BRC/URC, this comes at the cost of extra storage.
Logarithmic-SRC is ideal for datasets with uniform distributions over the query attribute domain.
However, it may feature an unacceptable number of false positives (and, thus, also search time) under
heavy data skew. This is mitigated by our final solution described in the next section.

6.3 Logarithmic-SRC-i1
The Logarithmic-SRC-i1 construction aims at reducing the false positives of Logarithmic-SRC from
O (n) to O (R + r ), where R is the query range size and r is the result size. It achieves this by building
a double index I = (I1, I2), where I2 indexes the tuples in D similar to the previous schemes, and I1 is
an auxiliary index that guides the search to I2. This construction is interactive (hence the “i” in the
name), i.e., it involves an extra round of communication between the owner and the server during
the query; the owner first queries I1, it receives the result from the server, and based on the result it
queries I2.

We illustrate the construction of I1 and I2 with the example of Figure 9. Suppose that D =
{d0, . . . ,d15}. Assume also for simplicity that d0, . . . ,d15 are sorted on A, so that the subscript i of
each di implies its position in the total order of the tuples on A. Also consider that d0.a = . . .d9.a = 2,
d10.a = 4, d11.a = d12.a = 5, d13.a = d14.a = 6, and d15.a = 7. Consider TDAG1 in the upper part
of the figure, which is built on domain A = {0, . . . , 7}, and let [3, 5] be the query range. Recall that
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Logarithmic-SRC answers this query with TDAG1 by using keyword N2,5. This returns as false
positives d0, . . . ,d9 corresponding to domain value 2, which comprise more than half of D.

1 20 3 4 5 6 7

N1N0 N2 N3 N4 N5 N6
N7

N0,1 N2,3 N4,5
N6,7

N0,3 N4,7

N0,7

N1,2 N3,4 N5,6

N2,5

d0-d9

Keyword Documents

N2

N5

N6

N7

N2,5

d10

N4

... ...

...

N1N0 N2 N3 N4 N5 N6 N7

N0,1 N2,3 N4,5 N6,7

N0,3 N4,7

N0,7

N1,2 N3,4 N5,6

N2,5

d11-d12 d13-d14 d15

(2, [0, 9])

(4, [10, 10])

(5, [11, 12])

(6, [13, 14])

(7, [15, 15])

〈(2, [0, 9]),

(5, [11, 12])〉

I1

Keyword Documents

I2

...

...

d1 d2d0 d3 d4 d5 d6 d7

N0,15

d8 d9 d10 d11 d12 d13 d14 d15

N8 N9 N10 N11 N12 N13 N14 N15

N8,9 N9,10 N10,11 N11,12
N12,13 N13,14 N14,15

N8,11 N10,13 N12,15

N8,15 N10,13
d12, d13〉
〈d10, d11,
...

...

(4, [10, 10]),

...

TDAG1

TDAG2

N7,8

N6,9

N4,11

Fig. 9. Building the index in Logarithmic-SRC-i1

Instead of using TDAG1 to index the tuples, Logarithmic-SRC-i1 uses it to index the ranges
of tuples corresponding to the domain values, where a tuple range accounts for a range of tuple
subscripts. Specifically, each leaf is associated with a pair (domain value, tuple range), e.g., N2 is
associated with (2, [0, 9]), since d0, . . . ,d9 all have domain value 2. The non-leaf nodes are associated
with the lists of (domain value, tuple range) pairs of the leaves in their subtree, e.g., N2,5 corresponds
to ⟨(2, [0, 9]), (4, [10, 10]), (5, [11, 12])⟩. I1 is constructed using the traditional SSE BuildIndex
algorithm, where the documents are the pairs or lists of pairs described above, and the keywords are
the TDAG1 node labels.

The construction then builds a second TDAG, denoted by TDAG2 in the lower part of the figure,
which is built on the tuples sorted on A. Note that the order of the documents corresponding to the
same keyword (i.e., to the same node in TDAG1) does not affect the structure of TDAG2. For instance,
TDAG2 would be equivalent if we swapped d11 with d12 in the leaf level (where d11 and d12 have the
same keyword). Prior to constructing TDAG2, we randomly shuffle the documents corresponding
to the same keyword. Each node corresponds to the tuples covered by its subtree, e.g., N10,13 is
associated with d10, d11, d12 and d13. I2 is constructed using the traditional SSE BuildIndex algorithm,
where the documents are d0, . . . ,d15, and the keywords are the TDAG2 node labels.

The scheme performs the query in two stages. In the first, it issues the query range to I1. For
instance, for [3, 5] it creates a token for N2,5 (following always the SRC range covering technique on
the TDAG), and receives ⟨(2, [0, 9]), (4, [10, 10]), (5, [11, 12])⟩. It then selects the pairs that satisfy the
query, and creates a new, single query range on the document subscripts, by merging the qualifying
ranges. In our example, it merges [10, 10] and [11, 12] to create new query [10, 12] ([0,9] does not
satisfy the original query). In the second stage, it issues [10, 12] to I2, creating the token for node
N10,13 in TDAG2, which fully covers the tuple range. The algorithm returns as result d10, d11, d12 and
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d13. Observe that now there is only a single false positive, d13, whereas Logarithmic-SRC returned
10 false positives for the same query. The RSSE protocol for Logarithmic-SRC-i1 is as follows:

k ← Setup(1λ ) Generate and output two SSE keys (k1,k2).
I ← BuildIndex(k,D) Build SSE index I1 on the tuple ranges using TDAG1 with key k1, and

index I2 on the sorted tuples on A using TDAG2 with key k2. Output (I1, I2).
t ← Trpdr(k,w ) This is an interactive algorithm. Parse k = (k1,k2). Generate SSE token t1 with

k1 for the SRC node on TDAG1 that covers range w , and send it to the server. Decrypt the
answer to retrieve new range w ′. Generate SSE token t2 with k2 for the SRC node on TDAG2
that covers w ′, and output (t1, t2).

X ← Search(t , I ) This is an interactive algorithm. Parse t = (t1, t2) and I = (I1, I2). Retrieve t1
from the owner, invoke the Search algorithm of SSE on I1 and send the result to the owner.
Retrieve t2 from the owner, invoke the Search algorithm of SSE on I2 and output the result X .

Table 1 illustrates the costs of Logarithmic-SRC-i1. The number of documents indexed by I1 is
equal to the number of distinct domain values contained in the dataset, since we index the entire
range of tuples on a specific domain value by a single (domain value, tuple range) document of
constant size. Therefore, since I1 is constructed using a TDAG similar to Logarithmic-SRC, its size
is O (n logm). The number of documents indexed by I2 is O (n), i.e., the entire D. Contrary to I1,
the TDAG is built on n leaves and, thus, the size of I2 is O (n logn). Assuming that m is typically
larger than n, the total storage cost becomes O (n logm). The query size is O (1), since there are only
two tokens involved. The false positives are O (R + r ), considering also those of I1. This is because
the range size in I1 is of size O (R), whereas in I2 is of size O (r ); due to Lemma 6.1, the number of
false positives in each index is linear in the query range size and, thus, the total false positives are
O (R + r ). The search time is dictated by the number of results plus the false positives and, thus, it is
also O (R + r ).

Since I1 and I2 are built following the construction algorithm of the underlying SSE protocol and
using two different keys, the leakage in each index is identical to that of the SSE scheme. Therefore,
having the L1 and L2 leakages of SSE for both indexes and the mapping between the nodes of the
first index to the nodes of the second index, we can prove the security of Logarithmic-SRC-i1.

We describe the leakage of Logarithmic-SRC-i1 more formally:
• L1 (D,A) = ⟨m,n,n

′⟩

D is the dataset, A is the query attribute domain, n is the cardinality of D, n′ is the cardinality
of unique values of D andm is the size of A.
• L2 (D,A,W ) =
⟨α (W ),σ (W ), (µ (RC (w ))TDAG1 , µ (RC (w

′))TDAG2 ,uqv (RC (w )), id (RC (w ′)))⟩
α (W ),σ (W )⟩ are the access and search patterns of the queries as defined for SSE. For every
query rangew ∈W , the leakage contains a tuple that consists of an alias µ (RC (w ))TDAG1 for the
node returned by the range covering RC (w ) in TDAG1 (similarly for TDAG2), along with the
unique domain values stored in TDAG1 and the list of tuple ids id (RC (w )) associated with the
keyword RC (w ′). It is worth mentioning that the combinations of (µ (RC (w ))TDAG1 , µ (RC (w

′))TDAG2 )
with σ (W ) also leak the relation between a node in TDAG1, with a node in TDAG2, i.e. more
than one nodes from TDAG1 can be associated with a node in TDAG2 and vice versa.

We include the security theorem and proof of Logarithmic-SRC-i1 in Appendix A.4.

Qualitative comparison. Logarithmic-SRC-i1 reduces the false positives as compared to Logarithmic-
SRC, even in the case of heavy data skew, while retaining the optimal query size and storage cost
O (n logm). As a downside, the usage of the auxiliary index leaks slightly more information than its
counterpart. For instance, the size of I1 (derived from L1 of I1) leaks the number of distinct domain
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values covered by the dataset, whereas the size of a result from a query to I1 (derived from L2 of
I1) reveals the number of distinct domain values covered by the result. Moreover, in non-skewed
datasets, Logarithmic-SRC-i1 inflicts higher search cost than Logarithmic-SRC. This is because the
benefits of using the extra I1 index in Logarithmic-SRC-i1 to reduce the false positives diminish
and, thus, the extra search overhead compared to Logarithmic-SRC becomes evident. In that sense,
Logarithmic-SRC-i1 is better under data skew, whereas Logarithmic-SRC is preferable in non-skewed
datasets.

6.4 Logarithmic-SRC-i2
In the previous subsection we showed that Logarithmic-SRC-i1 improved upon Logarithmic-SRC by
reducing the complexity of false positives from O (n) to O (R + r ), where n is the dataset size, R is the
query range size and r is the actual result size. In this subsection we present another scheme variant,
called Logarithmic-SRC-i2, which further reduces the false positives to O (r ). However, this comes
with some extra cost on storage, which now becomes O (m + n logn) from O (n logm).

The main observation is that the R term inO (R+r ) comes only because of TDAG1. This is because,
in TDAG2, the range query consists only of the actual id range that satisfies the result and, thus, has
size R = r . Due to Lemma 6.1, the false positives in TDAG2 is O (r ). To better illustrate the fact that
TDAG1 indeed may generate up to O (R) false positives, consider range [1, 4] in Figure 9. This range
is answered with node N0,7 as the single keyword query. Regardless of whether nodes N1-N4 are
empty, if nodes N0 and N5-N7 are non-empty, their values are returned as results to the owner as false
positives. Observe that the number of these values is R/2.

Motivated by the above, the key idea of Logarithmic-SRC-i2 is to substitute TDAG1 with a simple
array, denoted by T1. The scheme is still interactive but, contrary to TDAG1, the purpose of T1 is not
to get all the id ranges falling inside the query range. Instead, the goal is simply to get the ids of the
first and last document that satisfy the range query. Given this information, the owner can craft the
next range query token for TDAG2 in an identical manner to Logarithmic-SRC-i1.

Figure 10 explains the index creation in Logarithmic-SRC-i2 for the same example as that in
Figure 9 for Logarithmic-SRC-i1. Table T1 has one element for each value of the domain, and element
T1[i] simply lists the tuples with d .a = i. The mere purpose of this table is to construct the secure
index I1 as follows. For every domain value i we create two keywords, (i,L) and (i,R). (i,L) is
associated with the id of the last tuple with d .a ≤ i, whereas (i,R) is associated the id of the first tuple
with d .a ≥ i. For example, keyword (3,L) is associated with 9 since d9 is the last tuple with search
key smaller than 3, whereas keyword (3,R) is associated with 10 since d10 is the first tuple with
search key larger than 3 (since there is no tuple with search key equal to 3). The size of I1 is clearly
O (m) since the domain has size m. Moreover, it can be constructed in time O (m + n) given T1, since
T1 can be populated in O (n) time (it is a simple look-up table). Index I2 is constructed identically
to the case of Logarithmic-SRC-i1 and, thus, has size O (n logn). The total space requirements of
Logarithmic-SRC-i2 is O (m + n logn).

We explain how a range query is performed using the example of Figure 10, assuming that [3, 5] is
the query range. Similar to Logarithmic-SRC-i1, the query involves two rounds. In the first round,
the owner issues two keywords, namely (3,R) and (5,L) on I1. Observe that these queries will return
the first and last tuple id qualifying as results, namely 10, 12, by definition of the I1 construction.
Subsequently, the owner issues range query [10, 12] to the second index I2 in the same manner as in
Logarithmic-SRC-i1, which returns results d10,d11,d12, as well as d13 as the single false positive. The
query size is O (1).

The RSSE protocol for Logarithmic-SRC-i2 is as follows:

k ← Setup(1λ ) Generate and output two SSE keys (k1,k2).

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39. Publication date: March 2018.



39:26 Demertzis et al.

1 20 3 4 5 6 7

d0-d9

Keyword Documents

d10

N1N0 N2 N3 N4 N5 N6 N7

N0,1 N2,3 N4,5 N6,7

N0,3 N4,7

N0,7

N1,2 N3,4 N5,6

N2,5

d11-d12 d13-d14 d15

I1

Keyword Documents

I2

...

...

d1 d2d0 d3 d4 d5 d6 d7

N0,15

d8 d9 d10 d11 d12 d13 d14 d15

N8 N9 N10 N11 N12 N13 N14 N15

N8,9 N9,10 N10,11 N11,12
N12,13 N13,14 N14,15

N8,11 N10,13 N12,15

N8,15 N10,13
d12, d13〉
〈d10, d11,
...

...

T1

TDAG2

N7,8

N6,9

N4,11

(0,L)

(1,L)

(2,L)

(3,L)

(4,L)

(5,L)

(6,L)

(7,L)

(1,R)
(2,R)

(3,R)

(4,R)

(5,R)

(6,R)

(7,R)

−
−

9

10

15

Keyword Documents

0

10

11

13

15

0
0

10

(0,R)

9

12

14

Fig. 10. Building the index in Logarithmic-SRC-i2

I ← BuildIndex(k,D) Build SSE index I1 using T1 (as explained in Figure 10) with key k1, and
index I2 on the sorted tuples on A using TDAG2 with key k2. Output (I1, I2).

t ← Trpdr(k,w ) This is an interactive algorithm. Parse k = (k1,k2) and rangew = [i, j]. Generate
SSE token t1 = (t11, t12) with k1 for keywords (i,R) and (j,L). Decrypt the answer to retrieve
new range w ′. Generate SSE token t2 with k2 for the SRC node on TDAG2 that covers w ′, and
output (t1, t2).

X ← Search(t , I ) This is an interactive algorithm. Parse t = (t1, t2), t1 = (t11, t12) and I = (I1, I2).
Retrieve t1 from the owner, invoke the Search algorithm of SSE for t11, t12 on I1 and send the
results to the owner. Retrieve t2 from the owner, invoke the Search algorithm of SSE on I2
and output the result X .

We describe the leakage of Logarithmic-SRC-i2 more formally:
• L1 (D,A) = ⟨m,n⟩
D is the dataset, A is the query attribute domain, n is the cardinality of D andm is the size of A.
• L2 (D,A,W ) =
⟨α (W ),σ (W ), (µ (wL ), µ (wR ), µ (RC (w )), id (RC (w ))⟩
α (W ),σ (W )⟩ are the access and search patterns of the queries as defined for SSE. For every
query range w ∈W , the leakage contains a tuple that consists of an alias µ (wL ), an alias µ (wR )
for the tokens returned by the first encrypted index, an alias µ (RC (w )) for the query in TDAG2
and the list of tuple ids id (RC (w )) associated with the keyword RC (w ) in TDAG2.

We include the security theorem and proof of Logarithmic-SRC-i2 in Appendix A.5.
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Qualitative comparison. Compared to Logarithmic-SRC-i1, Logarithmic-SRC-i2 reduces both the
false positives and search time to O (r ), but increases the storage cost to O (m + n logn). In addition,
it introduces slightly higher leakage in index I1. Specifically, it leaks whether two ranges start or end
at the same endpoint. For instance, for queries [3, 5] and [3, 6] that have the same start, the owner
would issue the same token for keyword (3,R) for both ranges.

7 ATTRIBUTING LOCALITY
So far, we have assumed that all presented RSSE schemes utilize the SSE construction from [13].
This technique does not expand the storage required by each RSSE scheme which we analyzed and
summarized in Table 1. However, as we explained in Section 2.2, the SSE scheme of [13] does not
offer locality, which may lead to an excessive number of PRF computations and random accesses in
the server’s storage (equal to the tuples retrieved as result). In this section, we explore ways to use a
locality aware SSE scheme, while analyzing the caveats and opportunities for each RSSE scheme.
In particular, in Section 7.1 we explain a generic way to attribute locality to all our RSSE schemes
using a locality aware SSE construction as a black box, and outline the impact on the various cost
complexities with such an approach. In Section 7.2 we identify a unique opportunity for attributing
locality specifically to Logarithmic-SRC-i1 and Logarithmic-SRC-i2 without compromising any cost
complexity, and devise a new locality aware RSSE scheme, called Logarithmic-SRC-i∗.

7.1 A Generic Approach
A general approach to attributing locality to our RSSE schemes is to just substitute the locality
non-aware SSE scheme of [13] with a locality aware one, such as Approach #3 from [2], and use it
as a black box in our constructions. This would allow every RSSE scheme to achieve optimal locality
(as well as read efficiency). However, after a careful analysis, one can see that this would impact the
storage complexity of all methods, as explained below.

Let us focus on Logarithmic-SRC for the sake of demonstration (similar arguments can be made
for the other RSSE schemes as well). Recall that Logarithmic-SRC essentially creates a new dataset
that contains keyword/document id pairs (where the keyword is essentially the label of a TDAG
node), whose size is O (n logm). Recall from Table 2 that the storage complexity of Approach #3
from [2] is O (n logn), where n is the input dataset size. Consequently, substituting n for n logm
(i.e., the input RSSE dataset size), we derive that the total space for Logarithmic-SRC when using
Approach #3 from [2] as the underlying SSE scheme is O (n logn logm). Similarly, we can show
that the storage of Logarithmic-SRC-i1 is also O (n logn logm), whereas that of Logarithmic-SRC-i2
becomes O (n log2 n).

Although the above is a viable adaptation of locality aware SSE schemes to our RSSE solutions,
the extra logn factor in the storage requirements of the single range cover schemes translates to
potentially significantly larger indices as compared to the case of utilizing locality non-aware SSE
schemes instead. In the next subsection we demonstrate that, specifically for Logarithmic-SRC-i1
and Logarithmic-SRC-i2, we can still attribute locality while eliminating the extra logn factor from
the space complexity.

7.2 Logarithmic-SRC-i∗

We make an important observation: all our single range cover (SRC) schemes have linearithmic
storage requirements, similar to the locality aware SSE scheme of Approach #3 from [2]. The
question that arises is the following: Instead of using this SSE scheme as black box, is there any
way to utilize its internal mechanics (described in Section 2.2) and organize the contents of the SRC
structures in a particular way that does not incur extra storage penalty?
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We first explore Logarithmic-SRC, focusing on an extreme case where all the n tuples of the
dataset have the same search attribute value, say 0. Revisiting Figure 8, this means that all the tuples
are stored in node N0 and, by the definition of the TDAG, also in nodes N0,1, N0,3 and N0,7. Recall
that we treat each node as a keyword. Also recall from Figure 4 that [2] would store the results of all
these keywords (each with size n) in logm chunks in the same array Alogn . Therefore, the size of
Alogn would be O (n logm). By definition, all Ai arrays in this SSE scheme must have the same size
and, thus, the total size of the SSE structure becomes O (n logn logm), i.e., the same as in the case
where the SSE scheme is used as a black box.

Now we turn to Logarithmic-SRC-i1, and focus initially on TDAG1. Observe that each leaf node
can have up to a single value (by the definition of TDAG1). In addition, a node at level i can only have
up to 2i values. Moreover, a node in TDAG1 is non-empty only if its subtree has some non-empty
leaf, whereas the number of non-empty leaves is O (n). Let us suppose that we force a non-empty
node at level i to have exactly 2i values (even if we need to randomly pad this node). Then, treating
each node as a keyword for the SSE scheme, we can derive that each keyword at level i has 2i results,
and that there are O (n) such keywords at any level.

We can utilize the SSE construction from [2] (Figure 4) as follows. Based on the above discussion
and by the definition of the SSE scheme, the results of each keyword from level i of TDAG1 are
stored in array Ai , randomly in O (n/2i ) chunks of size O (2i ) each. There are in total logm levels
and, thus, logm Ai arrays. Therefore, the total storage cost is O (n logm). A similar construction and
analysis applies for TDAG2, which results in a total storage cost of O (n logn).

Observe that the final storage cost of the RSSE solution remains the same as in the case the locality
non-aware SSE scheme of [13] was used. The reason is twofold. First, we practically interleaved the
construction of the TDAG structures with that of the Ai arrays of the SSE scheme from [2]. This
enabled us to avoid inflating the storage overhead. Second, we exploited the property of each TDAG
to store a single value per leaf node. This enabled each inner node at level i to store up to 2i values
(instead of up to n in the case of Logarithmic-SRC), thus achieving the desirable storage complexity.

The above modifications allow us to define a new locality aware RSSE scheme, called Logarithmic-
SRC-i∗, which is formalized as follows:

k ← Setup(1λ ) Generate and output two SSE keys (k1,k2).
I ← BuildIndex(k,D) Build index I1 on the tuple ranges using TDAG1 with key k1, and index

I2 on the sorted tuples on A using TDAG2 with key k2, constructing appropriately the arrays
A0, . . . ,Alogn and dictionary of the locality aware SSE Approach #3 of [2] (as described above).
Output (I1, I2).

t ← Trpdr(k,w ) This is an interactive algorithm. Parse k = (k1,k2). Generate SSE token t1 with
k1 for the SRC node on TDAG1 that covers range w , and send it to the server. Decrypt the
answer to retrieve new range w ′. Generate SSE token t2 with k2 for the SRC node on TDAG2
that covers w ′, and output (t1, t2).

X ← Search(t , I ) This is an interactive algorithm. Parse t = (t1, t2) and I = (I1, I2). Retrieve t1
from the owner, invoke the Search algorithm of SSE on I1 and send the result to the owner.
Retrieve t2 from the owner, invoke the Search algorithm of SSE on I2 and output the result X .

Similar modifications apply to Logarithmic-SRC-i2 as well. However, note that these account only
for the TDAG2 structure; in index I1 constructed with the help of T1, each keyword has O (1) results
and, thus, optimal locality and read efficiency are trivially achieved.

We include the security theorem and proof of Logarithmic-SRC-i∗ in Appendix A.6.

Qualitative analysis. Logarithmic-SRC-i∗ achieves optimal locality and read efficiency, whereas the
rest of our RSSE schemes do not. Most interestingly, it does so in a way that does not compromise
its storage cost complexity. This is in contrast to the generic approach that is applicable to all RSSE
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schemes that increases the storage overhead by a multiplicative factor O (logn). The leakages of
Logarithmic-SRC-i∗ are identical with the Logarithmic-SRC-i1 or Logarithmic-SRC-i2.

8 TACKLING GENERIC ATTACKS
The past few years, several attacks against private range protocols have been proposed, both by the
crypto and the database communities [20, 38, 44]. Dautrich et al. [20] introduce a novel attack for
precise query protocols, i.e. protocols and schemes that leak the query result size and the access
patterns. Islam et al. [38] attempt to improve the aforementioned work by using auxiliary information,
while [44] accelerate the performance of the same attack from O (m2 logm) to O (m2) · ω (1), where
m is the size of the domain. They achieve this without the use of auxiliary information. Also they
only assume that the database is dense and the queries are drawn from a uniform distribution. This
attack is known as the access pattern attack. Furthermore, Kellaris et al. [44] proposes an even more
powerful attack, called communication volume attack, that only exploits the result size of each query,
formally referred to as the size of the access pattern. The communication volume attack comes with
the requirement that the adversary first observes O (m4) uniformly drawn queries. Below, we focus
on the state-of-the-art attacks considered in [44], since they outperform the prior attacks introduced
in [20, 38].

We first explain how these attacks affect our schemes. Our Constant-BRC/URC schemes create
for each range a vector of O (logR) randomly permuted tokens, and for each token they allow the
server to derive the leaf-level DPRF values. Each token forms a subtree, and the entire structure of
this subtree, including the order of the leaf tuples, is leaked to the server. However, the exact order
relation between different tokens is not directly leaked, due to the tokens’ random permutation within
the vector. Note that the access pattern and the communication volume attacks cannot be used in
these cases, as Constant-BRC/URC schemes do not allow overlapping queries. Moreover, recall that
our Logarithmic-BRC/URC schemes are similar to the Constant ones, and even though they require
increasing the storage by a logarithmic factor, they do not require the server to traverse/reconstruct
the subtree defined for each token. The tuples inside a node are randomly permuted, thus preventing
the server from learning order-related information about these tuples. If we disable the functionality
of performing overlapping queries (as we do in the Constant schemes), then we prevent the attacks
from accessing any order information. Yet, permitting overlapping queries can lead to the recovery
of the entire tree structure, including the order information of the tuples in the leafs. Finally, in
our Logarithmic-SRC family, the access pattern attack cannot be used for recovering any order
information, since the Logarithmic-SRC schemes do not leak the access pattern itself, but only an
upper-bound of each query result size. It is not clear if the communication volume attack can be used
against the Logarithmic-SRC family, because the attacker cannot observe O (m4) uniformly chosen
range queries; all range queries are transformed into single-keyword queries and there are only O (m)
possible queries that can be executed and observed by the server. Additionally, all the proposed
attacks presume that the server solely observes the exact query result, while in Logarithmic-SRC
family the results include false positives. None of the proposed attacks can be directly used against
the Logarithmic-SRC family. We conjecture that a new, more specialized attack could be found to
attack Logarithmic-SRC schemes, but even then the server would be unable to fully recover the order
of all the tuples. Nevertheless, since our approach allows O (m) queries it is possible for the server to
retrieve coarse-grained order information about large groups of tuples.

A possible generic defense against these attacks that can be adopted by our Logarithmic schemes
(URC/BRC and SRC) is to use fresh keys to re-encrypt the encrypted indexes after a certain number
of queries, which clearly enforces the server to lose track of any order-related information on the
previous queries. The aforementioned solution creates a trade-off between the frequency of re-
encryptions and the leaked information. Under certain circumstances, this solution can achieve O (1)

ACM Transactions on Database Systems, Vol. 9, No. 4, Article 39. Publication date: March 2018.



39:30 Demertzis et al.

amortized query overhead, while certain de-amortization techniques [57] can be used to bound the
worst case.

We will now describe a solution that can provably protect our Logarithmic-SRC/SRC-i1/SRC-
i2/SRC-i∗ schemes from the above attacks. Kellaris et al. [45] propose new schemes that use ORAM to
protect against access pattern attacks. However, they state that even these schemes remain vulnerable
to the communication volume attack. To overcome this problem, they propose a private range scheme
based on two main techniques, ORAM and differential privacy. The use of the former protects
their scheme from the access pattern attack, while the latter introduces noise to the results that
makes their scheme safe against the communication volume attack. It is out-of-the-scope of our
work to reproduce the results of this paper, but [45] approaches can be used orthogonally to our
Logarithmic-SRC/SRC-i1/SRC-i2/SRC-i∗ schemes. Note that this enhancement only applies to the
Logarithmic-SRC/SRC-i1/SRC-i2/SRC-i∗ schemes for two reasons. The first reason is that these
schemes are not vulnerable to access pattern attacks, since the deterministic trapdoors do not leak
information about the order of the results, as happens in Logarithmic-BRC/URC. The second reason
lies in the database organization of these schemes, which resembles a tree-like structure. This
structure has a logarithmic space expansion of the database, but bounds the communication additive
overhead to be logarithmic (see Theorem 4.3 of [45]). In this solution, we add a logarithmic number
of noise tuples for each query result, which affects the total search time respectively. It is important
to mention that this solution cannot be efficiently applied to approaches with O (n) space, since in
that case the noise introduced by differential privacy will also have to be O (n). The last point shows
the superiority of our Logarithmic-SRC/SRC-i1/SRC-i2/SRC-i∗ schemes that can achieve optimal
locality, while being provably secure from recently proposed attacks without requiring the use of
expensive ORAM schemes. We refer the reader to the original paper [45] for more details.

9 UPDATES
Recall from Section 2.1 that most dynamic SSE (DSSE) schemes [12, 40, 41, 62] create a dynamic
index that introduces the least possible leakage and provides forward privacy, i.e., it does not reveal
that a new update satisfies a previous query. Miers and Mohassel [52] propose a DSSE scheme
partially based on ORAMs; i.e., every single tuple access requires an extra poly-logarithmic overhead
for accessing more tuples. Furthermore, Bost [10] presents a scheme that requires O (m logN )
available storage, wherem denotes the size of the domain, and Stefanov et al. [62] use ideas mainly
inspired by ORAMs and expensive cryptographic tools, such as oblivious sorting. We did not use the
recent works of [10, 52, 62], because these do not seem to meet our efficiency requirements.

We follow an alternative methodology adopting a bulk-loading technique from commercial
databases (e.g., Vertica [48]), which is simple from a security point of view, but (i) builds upon static
SSE schemes that are faster and easier to implement than their dynamic counterparts, (ii) enables
easy formulation of leakage, and (iii) captures forward privacy. It is also generic; it applies to all
our solutions and to any future static RSSE scheme. We need to highlight that our dynamic solution
has the exact same leakage profile as the aforementioned dynamic SSE schemes; categorized as a
dynamic scheme with state-of-the-art leakage for updates.

We assume that updates come in batches, which need not be of the same size, and each batch i is
treated as a separate datasetDi . The updates can be insertions of new tuples, or modifications/deletions
of old tuples. Every update is treated as an insertion in the new dataset; deletions carry an one bit
flag indicating that the tuple must be removed. For each new dataset Di , the owner creates a new
index Ii (note that Ii may correspond to more than one internal indexes that the SSE scheme creates,
as in the case of Logarithmic-SRC-i2, where each Ii contains 2 indexes) with a fresh key ki following
the BuildIndex of the utilized construction, and sends the encrypted data to the server. Recall that
both inserted and deleted tuples may exist in each index Ii .
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Fig. 11. Demonstrating the update process for s = 2. IX−Y denotes the index corresponding to all
batches from X to Y. When the second update batch arrives, the owner downloads I1, decrypts it,
merges it with the updates, constructs I1−2 and uploads it to the server. I2 is never created (included in
the figure only for demonstration purposes). Similarly, at the fourth batch, I1−2 and I3 are downloaded
and then index I1−4 is computed and sent to the server. The indexes I4 and I3−4 are never created.

Suppose that the owner has uploaded b such indexes. Upon a query, the owner creates b separate
tokens, one for each index, with the corresponding key. The server processes them separately on the
b indexes, and returns the results. The final refinement of the results occurs at the owner, who filters
out the deleted tuples and appropriately performs the potential modifications.

Clearly, the number of keys, query size, storage cost, search time and result size increase with
b (linearly, if the batches are of about the same size) and, thus, the number of indexes should not
increase indefinitely. Therefore, we adopt the approach of Vertica, which essentially organizes the
datasets/batches into a log-structured merge tree. Specifically, the owner sets a parameter called
consolidation step, denoted by s, which determines how frequently the indexes must be merged.
After creating s new indexes, the owner downloads them, merges their tuples into a single index,
consolidating deleted tuples with their inserted counterparts (i.e., an inserted tuple is removed if we
meet an identical tuple that has its delete flag set), re-encrypts the index and sends it to the server.
This happens hierarchically; after consolidating s indexes s times, the s merged indexes are further
consolidated into a new one. An example for s = 2 is depicted in Figure 11. Conceptually, this
process is like organizing the indexes as leaves of a full s-ary tree created bottom-up, such that when
s nodes are created in a level, they get consolidated creating a parent node at the next higher level.
This leads to an amortized logarithmic merge cost in the number of batches [48]. Although this
incurs extra periodic cost at the owner for the consolidation and re-encryption, it retains O (s logs b)
indexes at the server (and keys at the owner) at all times, instead of b. Finally, note that s should be
tuned based on the application at hand. For instance, if the application expects frequent deletions,
it is beneficial to set s to a small value, in order to perform merge operations more frequently, thus
eliminating the extra cost for storing the deletions as insertions.

The leakage of this methodology is essentially the entire history of the L1,L2 leakages of every
index that was once “active” at the server. More formally, at the time of processing batch i the number
of independent indexes is c (c is upper-bounded by O (s logs b)), and the total leakage of our dynamic
scheme is defined as the union of allHIST κ , for 1 ≤ κ ≤ i, whereHIST is defined as the union
of leakages (L1,L2)

1, · · · , (L1,L2)
c . For instance, from this leakage one could derive the number

of deletions that occurred in one of the batches. Also observe that our technique satisfies forward
privacy; every index is encrypted with a fresh key and, thus, a token created for one index in the past
cannot be used to decrypt index components produced in the future.
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10 RANGE AGGREGATE QUERIES
In this section we focus on range aggregate queries (defined in Section 3). Observe that there is a
straightforward way to answer this type of queries using our Constant-BRC/URC and Logarithmic-
BRC/URC RSSE schemes. For instance, for the range sum query, we can simply store the sum of
all tuples corresponding to each node of the tree structures of each scheme, instead of the tuples
themselves. Then, instead of sending the tuples associated with the nodes/keywords corresponding
to the query range, the server sends only the (encrypted) sums stored in those nodes. The owner
can then simply add all results, since each result corresponds to a single subtree covering only
part of the range. However, in addition to the inherited leakage of the underlying RSSE schemes,
potentially unnecessary storage is sacrificed, whereas the query size is non-constant. On the other
hand, Logarithmic-SRC and its variants cannot be used at all, since the false positives alter the actual
result. Calculating an exact result involves sending all the tuples stored in the queried node as in the
original SRC schemes, and forcing the owner to manually filter the false positives and calculate the
aggregate locally. This clearly incurs considerable cost to both the server and the owner.

Our goal is to design secure schemes that can answer range aggregate queries with constant
query and result size, while retaining the storage overhead as low as possible. This motivates new
constructions for this problem. In Section 10.1 we describe our range sum query (RSQ) scheme
(along with its adaptations for answering also count, average, and variance queries), whereas in
Section 10.2 we present our range min query (RMQ) technique (along with its adaptations for solving
also max, top-k, and bottom-k queries).

10.1 Range Sum Query (RSQ)
We introduce a novel provably secure scheme for the range sum query (RSQ) based on prefix sums (see
Section 2.2). Figure 12 shows the prefix sums array P and secure index I constructed in this scheme.
We essentially create a keyword for every domain value i, and store as result the corresponding value
of P[i]. Let [3, 7] be the query range. Then the owner sends tokens for keywords 2 and 7 to the server,
receives and decrypts results P[2] and P[7], and computes the result as P[7] − P[2] = 65 − 45 = 20.

Prefix sums P

1

2

0

7

keyword value

3

4

5

6

I

0 1 2 3 4 5 6 7

0

0
45

45

45

45

65

65

0 0 45 45 45 45 65 65

Fig. 12. Constructing a secure index I for answering RSQ

This technique is formalized as follows:
k ← Setup(1λ ) Generate and output a SSE key k.
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I ← BuildIndex(k,D) Create the prefix sums P of the dataset on the aggregate attribute B for
the domain of attribute A. Build SSE index I using as keywords each domain value i and
corresponding result value P[i]. Output I .

t ← Trpdr(k,w ) Parse w as query range [l ,u]. Generate SSE tokens for keywords l − 1 and u
and output them as t = (t1, t2).

X ← Search(t , I ) Parse t = (t1, t2) and invoke the Search algorithm of SSE on I for t1 and t2.
Output the two results as X .

The owner decrypts the result X to get P[l − 1] and P[u], and calculates the final aggregate result
as P[u] − P[l − 1]. The scheme requires O (m) space, where m is the domain size, and O (1) query
size and search time. As leakage, it reveals whether two ranges share an endpoint.

We describe the leakage of the RSQ scheme more formally:

• L1 (D,A) = ⟨m⟩
D is the dataset, A denotes the query attribute domain andm is the size of A.
• L2 (D,A,W ) = ⟨α (W ),σ (W ), (µ (wL ), µ (wR ))⟩
α (W ),σ (W )⟩ are the access and search patterns of the queries as defined for SSE schemes. For
every range query w ∈W , the leakage contains a tuple that consists of an alias µ (wL ), an alias
µ (wR ) where µ (wL ) refers to a l − 1 correspondence and µ (wR ) to u (of the range [l ,u]).

We include the security theorem and proof of RSQ in Appendix A.7.

With minor modifications of the above scheme, we can answer count, average, and variance
queries. For instance, to support count queries, we construct the prefix sums by considering that
every tuple has B attribute value equal to 1. For average, we construct prefix sums for both counts
and sums and return both values per query token. The owner can then retrieve the exact sum and
count separately, and then divide these two values to derive the average. Finally, variance requires
constructing prefix sums for counts, sums, and sums of squares, such that we can derive the average
and the average of squares. The exact variance is easily computed by subtracting the square of the
average value from the average of squares. In all the above cases, the storage, query size and search
time are all expanded by a small constant factor.

Finally, note that we can easily handle updates (insertions and deletions), following the update
methodology discussed in Section 9. In particular, we perform updates in batches, creating a new
secure index as described above for each batch. In the case of deletions, we make sure we reverse
the sign of the aggregate attribute value for each deleted tuple (each deleted tuple with an aggregate
attribute value of X is thus treated as an inserted tuple with an aggregate attribute value of −X ) when
creating the prefix sums. The owner queries each index independently as presented above deriving
a separate result, and simply adds all these results together. This increases the query and search
time by a factor equal to the number of separate indices stored at the server (which, as mentioned
in Section 9, can be compacted periodically if their number exceeds some threshold).

10.2 Range Min Query (RMQ)
In this subsection we design two novel and provably secure RMQ schemes that feature constant query
size and search time. The first requires O (m logm) space, whereas the second O (m + n logn) space.
They are both based on the sparse table approach for solving the traditional RMQ query described
in Section 2.2. Their main difference is that the first applies the sparse table technique on the range
attribute domain (and, hence, the resulting complexity), whereas the second maps the range query
process from the range attribute (A) domain to the id attribute domain, involving an extra look-up
to retrieve auxiliary information about the range endpoints. The second scheme is preferable in the
presence of great skew in the distribution of the A values, i.e., when there are very few distinct A
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values. However, the space savings come with the cost of an extra round of communication between
the owner and the server. In other words, in contrast to the first approach, the second is interactive.

Approach #1 (O(m log m) space). Considering the sparse table solution to the traditional RMQ
problem described in Section 2.2, we can construct a secure RMQ scheme with the targeted space
bounds in a simple manner. Specifically, the owner first constructs a vector A′ on range attribute A
storing at element A[i] the minimum aggregate attribute (B) value for each tuple with range attribute
value (A) equal to i. Figure 13 shows an example of this vector for the dataset of Figure 7. For
instance, there are 10 tuples with A = 2, but the minimum value is 0, thus A′[2] = 0. On the other
hand, there is no tuple with A = 0 and, thus, we store ‘−’ in A′[0] instead. The size of vector A′ is m,
i.e., equal to the size of domain A.

Next, the owner constructs the M matrix on A′ in the same manner as we described in Section 2.2.
Note that, by definition, M stores logm values for every element of A′, even for those that store ‘−’.
The secure index I then consists ofm logm keywords of the form w = (w1,w2), each associated with
a document that stores M[w1][w2]. As in all our previous solutions, the secure index is constructed
with some underlying SSE scheme. Observe that M containsm logm elements and, thus, the total
space complexity of this scheme is O (m logm).
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Fig. 13. Example of secure RMQ approach #1

Given a query range of the form [i, j], the owner computes a token for keyword (i, l ) and one
for keyword (j − 2l + 1, l ), where l = ⌊log(j − i + 1)⌋ and sends them to the server. Using the
secure index I , the server can retrieve and return as result the encrypted values of M[i][l] and
M[j − 2l + 1][l]. According to the discussion in Section 2.2, the owner can calculate the final results
as min(M[i][l],M[j − 2l + 1][l]). In Figure 13, for query range [3, 7], the server sends M[3][2] = 0
and M[4][2] = 0, and the owner computes the final result as 0. Note that, if M[w1][w2] = −, then
this is ignored, whereas if both returned M entries are equal to −, then the owner knows that there
are no tuples in the query range. Observer that the query size and search time are constant.

We omit the detailed construction and proof of this approach, as they are simpler versions of the
ones we provide for our second secure RMQ scheme, presented below.

Approach #2 (O(m + n log n) space). Observe that the first approach wastes a lot of space when
there is great skew in the distribution of the range attribute (A) values. This is because vector A′

ends up storing many redundant ‘−’ values, which in turn may appear in a considerable number of
elements in M . Ideally, we would like the vector on which M is computed to be dense, i.e., to have no
‘−’ (i.e., empty) values, such that M becomes dense as well. The main idea of our second approach is
to map the range search from the range attribute (A) domain to the id attribute domain. We discuss
the construction in detail below, using the example in Figure 14 for the dataset of Figure 7.
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The owner first constructs a n-element vector ID as follows. It sorts the tuples based on the range
attribute A, and stores at ID[i] the aggregated attribute B of the i-th tuple in the sorted order. For
simplicity, in the dataset of Figure 7 the tuples are already sorted on A and, thus, the i-th tuple has id
i (we stress though that this may not be the case in general). Please note that, in our example, the
smallest range attribute value is 2, thus the ten tuples with this range attribute value are mapped to
the first 10 entries of vector ID, while at ID[10] we store the aggregate attribute of the next tuple
in the sorted order (i.e., the tuple having a range attribute equal to 4). The owner then builds the M
matrix on ID as we discussed in Section 2.2 (observe that M now has 5 levels and that its lowest
level is identical to the ID vector). Similar to our first RMQ approach, the owner builds a secure
index on keywords (w1,w2) that are associated with a document that stores M[w1][w2]. We call this
index I2 in the second approach.
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Fig. 14. Example of secure RMQ approach #2

Given a range on A, for example [3, 7], observe that there is no way to utilize M , since the latter is
constructed on the tuple ids. However, recall that the tuples were sorted on A when we constructed
ID. Therefore, if we can locate the first and last ids of the tuples that satisfy the range on A, we can
map the range on A to a range on ID and, thus, utilize M to answer it. Towards this end, we construct
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a second secure index I1 as follows. Recall that we constructed an index for locating the first and last
tuple id in a query range on A in Logarithmic-SRC-i2 (Section 6.4), namely I1 on a simple vector T1.
We build such an index in the same manner, which is shown in the upper part of Figure 14. Note that
it is important for T1 to store the tuple ids after sorting the tuples on A.

The query algorithm is interactive, which we illustrate with an example for query range [3, 7] in
Figure 14. The owner first issues keywords (3,R) and (7,L) on I1, and receives tuple ids 10 and 15,
respectively. Using these ids, she forms a new query range [10, 15] for vector ID. She then creates
the appropriate tokens for the corresponding M matrix that will be used on secure index I2. Based
on previous discussions, these will be (10, 2) and (11, 2) to get M[10][2] = 0 and M[11][2] = 0,
respectively. The owner finally derives that the result is 0. The formal construction is provided below:

k ← Setup(1λ ) Generate and output two SSE keys (k1,k2).
I ← BuildIndex(k,D) Build T1, ID and M as explained in Figure 14. Construct SSE index I1

using T1 with key k1, and SSE index I2 on M using key k2. Output (I1, I2).
t ← Trpdr(k,w ) This is an interactive algorithm. Parse k = (k1,k2) and rangew = [i, j]. Generate

SSE token t1 = (t11, t12) with k1 for keywords (i,R) and (j,L). Decrypt the answer to retrieve
new range [i ′, j ′] for ID. Compute l = ⌊log(j ′ − i ′ + 1)⌋. Generate SSE token t2 = ((i ′, l ), (j ′ −
2l + 1, l )) with k2 for I2, and output (t1, t2).

X ← Search(t , I ) This is an interactive algorithm. Parse t = (t1, t2), t1 = (t11, t12), t2 = (t21, t22)
and I = (I1, I2). Retrieve t1 from the owner, invoke the Search algorithm of SSE for t11, t12 on
I1 and send the results to the owner. Retrieve t2 from the owner, invoke the Search algorithm
of SSE t21, t22 on I2 and output the result X .

Observe that the second approach needs O (m) space for I1 and O (n logn) space for I2, i.e., the
total space requirements are O (m + n logn). Similar to the first approach, the query size and search
time are constant.

The leakage is the union of the SSE leakages for the 2 keyword queries on I1 and the 2 keyword
queries on I2. Practically, the adversary learns if two queries have same starting range endpoint or
ending range endpoint (from I1), and whether two queries are answered by the same element of M
(from I2). The latter leakage reveals that the two ranges may have similar sizes, since the same power
of two range size helped in answering both the queries.

We describe the leakage of RMQ-Approach #2 more formally:

• L1 (D,A) = ⟨m,n⟩
D is the dataset, A is the query attribute domain, n is the cardinality of D andm is the size of A.
• L2 (D,A,W ) = ⟨α (W ),σ (W ), (µ (w1,L ), µ (w1,R ), (µ (w2,L ), µ (w2,R ))⟩
α (W ),σ (W )⟩ are the access and search patterns of the queries as defined for SSE schemes.
For every query range w ∈ W , the leakage contains a tuple (µ (w1,L ), µ (w1,R ) of aliases for
the two tokens of I1 and a tuple (µ (w2,L ), µ (w2,R ) of aliases for the two tokens of I2. As in
Logarithmic-SRC-i1, (µ (w1,L ), µ (w1,R ), (µ (w2,L ), µ (w2,R ) and σ (W ) correspond to the leaked
relationships between these tokens.

We omit the proof of this approach, as it is similar with the one of Logarithmic-SRC-i2 (it has 4
different tokens and for each of them we use σ (W ) to identify if a token has appeared before or we
will choose a new random token).

Again, the random values are of appropriate length and format. Now, the simulator uses L2 in
order to simulate the queries. For simplicity, we omit all the combinations between the 4 different
tokens; the high level idea is similar to the one of Logarithmic-SRC-i1. In particular, we use σ (W ) to
identify if a token (one of the 4 above) has appeared before. This allows us to specify if the simulator
will return a previous token or a new one.
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With simple modifications, we can support more aggregate queries in a similar way. For instance,
we can support range max by simply recording the maximum value on B instead of the minimum
in all the discussed structures. In addition, we can handle slightly more complicated queries like
range bottom-k and range top-k, which return the k minimum and the k maximum values (with
multiplicities) in the specified range, respectively. Range min (max) is then a special case of range
bottom-k (top-k) for k = 1. Below we describe the modifications only for bottom-k , since the case of
top-k is very similar.

We can construct a secure scheme for range bottom-k queries by expanding the storage space
and result size of the underlying RMQ scheme by a factor of k. We build upon our second RMQ
approach and, thus, the total storage space required is O (m +kn logn). When constructing the secure
index, the only modification required is on the preparation of M and the eventual construction of I2.
Instead of storing only the minimum value in each element of M , we store the k smallest values in
the corresponding range. In addition, for each such value, we explicitly store the id of the tuple that
contains it. In other words, we store k pairs (d .B,d .id ) in each element of M (if the number of tuples
is less than k in some ranges, then we store ‘−’ instead). Index I2 then stores these k pairs as the
contents of the documents for each keyword (w1,w2) (with the sort order being not solely on d .B but
on the entire (d .B,d .id ) pair - this is required to ensure correctness in the case of deletions), instead
of just the minimum as in the RMQ scheme. Given a query, the owner follows the same algorithm
as we discussed for RMQ, but receives 2k (d .B,d .id ) pairs in the second round of communication.
Observe that the owner can simply sort these pairs in ascending order of (d .B,d .id ), eliminate all
duplicate pairs, and choose the first k pairs as the bottom-k result. The query size is constant, but the
result size becomes O (k ).

Finally, we are also able to answer the RMQ query and its variations in the presence of updates as
follows. We focus again on bottom-k (which also covers range min), since top-k is similar. The key
idea in the solution is the fact that we include the ids of the bottom-k tuples in addition to their values
on aggregate attribute B in matrix M (this implies that we should include them also when k = 1 for
range min). In the case of insertions, recall that we need to create independent structures for every
update batch and query each separately. After getting the results from each batch, we just need to
sort the union of the received pairs on B, remove the duplicates, and select the first k as the bottom-k
result, exactly as we explained above.

Deletions require a more subtle treatment. First, we need to store deletions separately from
insertions, but the secure structures we build on them are identical to those of insertions discussed
above. Second, we query all structures independently as explained above, but maintain two sorted
and deduplicated lists; one for insertions and one for deletions, let LI and LD , respectively. Finally,
we perform the set difference LI − LD , and return the first k pairs in the resulting list as the final
result. The problem that arises is that, if a deleted tuple used to be a bottom-k result for the query
range, we may end up with fewer than k elements in LI − LD . In that case, we need to consolidate the
update batches and construct new indices. A heuristic solution to this problem is to keep k ′ > k pairs
in matrix M , slightly increasing all the involved costs. This reduces the chance that a set of deletions
causes the size of LI − LD to drop below k.

11 EXPERIMENTAL EVALUATION
The performance of the proposed schemes was also evaluated experimentally using real datasets.
From the experiments, we excluded the Quadratic scheme, which features a prohibitive storage cost.
Logarithmic-SRC-i∗ was implemented using Logarithmic-SRC-i1 as the base scheme. Based on our
discussion in Section 2.1 about the three schemes of Li et al. [50], we also include a comparison to
the basic scheme of Li et al., hereafter referred to as PB, recalling though that the latter offers weaker
security than our schemes. Our experiments were set to evaluate the performance and scalability of
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the proposed algorithms for range search queries and range aggregate queries. More experiments,
which focus on the performance of the algorithms in presence of updates and on the query execution
cost for the owner are included in the Appendix.

Setup. We implemented our solutions in Java, and conducted our experiments on a 64-bit machine
with an Intel® CoreTM i7-2720QM CPU at 2.2GHz and 16GB RAM, running Linux Ubuntu 14.10.
We utilized the JavaX.crypto library for the entailed cryptographic operations. Specifically, we
implemented PRF and GGM evaluations with HMAC-SHA-512, and hash computations with SHA-1.
We also used AES128-CBC for encryption. We chose the construction by Cash et al. [13] as our
underlying SSE scheme, setting its parameters to the values recommended in [13] for space-efficiency
(S = 6000, K = 1.1).

We experimented with two real datasets. The first is from the Gowalla geo-social network
(snap.stanford.edu/data/loc-gowalla.html), hereafter called Gowalla. This dataset
consists of 6,442,890 user location check-ins in a period between February 2009 and October 2010
and it has size 34.3 MB. We used as query attribute the date/time of the check-ins converted to 32-bit
integers and translated such that the domain is A = {0, . . . , 103017913}. The second dataset is from
the US Postal Service (www.app.com), called USPS, and contains 389,032 employee records and it
has size 389 MB. We used as query attribute the annual salary field with domain A = {0, . . . , 276840}.
Note that Gowalla is relatively uniform on A (95% distinct values on A), whereas USPS is heavily
skewed (5% distinct values on A). All datasets and respective indexes fit in memory.

We first compare our proposed algorithms and experimentally evaluate them based on their index
construction cost, the number of false positives, and the search time.

Index costs. In the first set of our experiments we assess the index size and construction time in
Gowalla when varying the dataset size n, and demonstrate the results in Figures 15(a) and 15(b),
respectively. The construction time involves also the I/O cost for reading the dataset from the disk
into main memory. As in [50], to retrieve the various datasets, we simply partition the initial dataset
(sorted on A) into 10 sets of 500K tuples each, chosen uniformly at random from the entire data set,
start with one partition, and gradually add the rest of the partitions. Note that the BRC and URC
variants of the same scheme feature identical costs. The index size entails only the replicated tuple
ids and their associated keywords. The curves in both figures have the same trends, since the index
size dictates the construction time. Moreover, both the index size and construction time scale linearly
with n, since even the logarithmic factors essentially add a constant factor to the overall size.

As expected, the Constant schemes achieve the smallest index size (12.63-131 MB), as well as
the lowest construction time (288-332 s). The costs in Logarithmic-BRC/URC increase faster due
to the logarithmic factor in the index size. Logarithmic-SRC incurs about twice the size and time
compared to Logarithmic-BRC/URC, due to the nodes injected to form the TDAG. Logarithmic-SRC-
i1 requires double the size and time compared to Logarithmic-SRC. Recall that Logarithmic-SRC-i1
entails building a second index on top of the one in Logarithmic-SRC, whose size depends on the
distinct values on A covered by the dataset. Since 95% of tuples in Gowalla have distinct keys, the
size of the extra index is almost as large as the basic one, doubling the overall space requirements.
Logarithmic-SRC-i2 on the other hand is initially more expensive than Logarithmic-SRC-i1, but
it becomes more compact after the dataset outgrows 1.5 Million tuples. This coincides with the
theoretical cost analysis of the two methods. Notice that, in this dataset, domain size m is a bit over
100 Million. In other examples, domain sizes may easily stretch to several Billions, e.g., the full range
of 32-bit integer keys will already cover domain sizes over 4.2 Billions, whereas IPv6 ip addresses
will have m = 2128. In these cases, Logarithmic-SRC-i1 will outperform Logarithmic-SRC-i2 for
much larger datasets. Logarithmic-SRC-i∗ has similar storage demands with Logarithmic-SRC-i1,
but since it uses padding such that all result sizes are a power of 2, its overall size is at most twice the
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Fig. 15. Index costs (Gowalla)

size of Logarithmic-SRC-i1. Finally, observe that Constant-BRC/URC and Logarithmic-BRC/URC
outperform PB [50] in terms of index size, whereas the construction cost of all our schemes is
significantly lower than PB.

Table 3 includes the index size and construction time for the full USPS dataset. Similar to the
case of Gowalla, the Constant schemes feature the smallest overheads, Logarithmic-BRC/URC
add a constant factor to the costs of Constant, and Logarithmic-SRC incurs almost twice as high
costs as Logarithmic-BRC/URC. However, the most interesting observation here is that, contrary
to the case of Gowalla, Logarithmic-SRC-i1 adds minimal overheads to those of Logarithmic-SRC.
This is because in USPS there are only 5% distinct values on A, which makes the extra index in
Logarithmic-SRC-i1 very compact. Once again, Constant-BRC/URC and Logarithmic-BRC/URC
feature a smaller index size than PB, whereas all our schemes have orders of magnitude faster
construction time than PB.

Table 3. Index costs (USPS)

Scheme Index size (MB) Constr. time (s)
Constant-BRC/URC 10.30 2.853
Logarithmic-BRC/URC 195.7 54.967
Logarithmic-SRC 391.4 106.970
Logarithmic-SRC-i1 419.14 119.662
Logarithmic-SRC-i2 398.69 112.32
PB ([50]) 299.06 2374

False positives. Figure 16 plots the average false positive rate (i.e., the average ratio of false positives
over the total result size) as a function of the query range size, computed over the results of 200K
random queries on each domain. The Constant and the Logarithmic-BRC/URC schemes are not
included in this experiment since they do not induce false positives. Since Logarithmic-SRC-i∗ was
built using Logarithmic-SRC-i1 as the reference scheme, both Logarithmic-SRC-i1 and Logarithmic-
SRC-i∗ have almost identical false positives, and are therefore displayed with a single curve. We see
that the false positive rate decreases almost linearly with the range size, since more tuples previously
marked as false positives are contained in the range. In both datasets, Logarithmic-SRC-i1 and
Logarithmic-SRC-i∗ incur fewer false positives, outperforming Logarithmic-SRC by up to 27%
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Fig. 16. False positives

in Gowalla and 38% in USPS. In USPS the rate drops more steeply in Logarithmic-SRC-i1 and
Logarithmic-SRC-i∗, and the performance margin becomes wider, since USPS is more skewed than
Gowalla, offering stronger opportunities to the auxiliary I1 index in these two methods to eliminate
false positives. Overall, the false positives in Logarithmic-SRC-i1 and Logarithmic-SRC-i∗ do not
exceed 40% of the entire answer. Note that PB introduces a very small number of false positives for
all range sizes. However, our Constant-BRC/URC and Logarithmic-BRC/URC, whose performance
has dominated that of PB in the investigated metrics so far, introduce no false positives at all.

Search cost. We evaluate the wall-clock time for executing Search at the server. In Figures 17(a)
and 17(b) we report the average CPU cost in Gowalla and USPS, respectively, for the same 200K
queries used in the previous experiment. Notice that the Y axis is in logarithmic scale for illustration
purposes, and the displayed time is inclusive of the unavoidable time of retrieving the actual results
through the underlying SSE scheme. The search time in all our methods, except Logarithmic-SRC-i∗,
is dominated by the PRF/DPRF evaluations entailed in [13] for each retrieved tuple. Consequently,
Logarithmic-BRC (resp. Constant-BRC) and Logarithmic-URC (resp. Constant-URC) have neg-
ligible performance difference and are grouped together. Finally, as a worst-case scenario for the
absolute running time benefits of Logarithmic-SRC-i∗ compared to all other schemes, the queries
were performed on in-memory data. Please recall that Logarithmic-SRC-i∗ is the only scheme that
optimizes the read efficiency, thus for disk resident data the absolute running time difference is
expected to be even larger.

Notice that, choosing a single-keyword SSE protocol other than [13] as a basis of our methods could
entail different costs for our methods, since these exploit SSE as a black box (except Logarithmic-
SRC-i∗), and thus depend on its performance. In other words, a more efficient SSE scheme will
immediately improve the performance of our methods. However, evaluating and comparing the effect
of single-keyword SSE schemes is out of the focus of this work.

Clearly, Logarithmic-SRC-i∗ outperforms all other algorithms by four orders of magnitude (its
worst-case time is around 5 milliseconds). The results are consistent in both datasets. This stark
performance improvement compared to our other algorithms is attributed to the optimal locality
and read efficiency of Logarithmic-SRC-i∗, which enables it to execute a query with a single PRF
evaluation, as well as a single and contiguous memory lookup (recall that PRF/DPRF evaluations
constitute the dominant time bottleneck for all our other methods). Also, performance of Logarithmic-
SRC-i∗ stays almost unaffected by an increase in the query range, since additional sequential reads
add negligible overhead. We also see that the performance of the Logarithmic-BRC/URC methods
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Fig. 17. Search time
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Fig. 18. Index costs - Range Aggregates Queries (Gowalla)

coincides with that of pure SSE. This is expected, since their search complexity is O (logR + r ),
and logR adds negligible overhead. The Constant schemes are slightly more expensive, due to the
extra expansion of the GGM tokens into O (R) DPRFs. Observe that this additional cost is more
pronounced in Gowalla, due to its significantly larger domain (and, thus, query range sizes) than
USPS. The SRC-based schemes are more costly, due to the false positives they introduce. In Gowalla,
Logarithmic-SRC-i1 is more expensive than Logarithmic-SRC, due to the extra searches in its
auxiliary index. Nevertheless, in USPS, Logarithmic-SRC-i1 outperforms Logarithmic-SRC, since
its savings in false positives outweigh the extra index cost. PB features comparable search cost with
that of Constant-BRC/ URC and Logarithmic-BRC/URC in the Gowalla dataset, but higher search
cost in the case of USPS. In overall, the Constant-BRC/URC and Logarithmic-BRC/URC schemes
subsume PB also in terms of performance.

Range Aggregate Queries. We examine the performance of our techniques for aggregate queries on
datasets of different sizes. The datasets were constructed in a similar way to the above experiments,
by selecting subsets of the Gowalla and USPS data sets.
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Fig. 19. Index costs - Range Aggregates Queries (USPS)

Table 4. Search times for aggregate queries. Difference was insignificant between the two datasets.

Query Time (msec)
Range Sum Query 0.032
Range Min Query - Approach 1 0.032
Range Min Query - Approach 2 0.065

We first consider the index size for the three algorithms. As shown in Figures 18(a) and 19(a), the
index size for the RSQ and the first RMQ algorithm (RMQ-Approach 1) is orthogonal to the data
set size; this coincides with the theoretical results discussed in Section 10, which show that index
size for these algorithms depends only on the domain size m. On the contrary, for the case of the
second RMQ algorithm, the index size for Gowalla grows just a little bit more than linearly with
the dataset size, substantially outperforming the former approach. This happens because the second
RMQ approach manages to exploit the high sparsity of the Gowalla dataset (n/m is below 0.05) to
reduce space requirements. On the other hand, for the USPS dataset, we see that the second RMQ
algorithm soon becomes more expensive than the former, since the dataset is denser (n/m ends up
around 1.4 for the full dataset).

In terms of indexing time, we see again in Figures 18(b) and 19(b) that the performance of the
RSQ algorithm and the first RMQ algorithm (RMQ-Approach 1) is almost orthogonal to the dataset
size. As before, there exists a miniscule, not visually detectable increase in the construction times of
all indexes due to the initial preparatory steps of the two algorithms (i.e., constructing the prefix sum
for RSM, or mapping of values for RMQ – cf. Figures 12 and 13), but this is overshadowed by the
remaining steps of the two algorithms and the encryption cost. The second approach for RMQ again
offers substantially higher benefits for Gowalla, compared to the denser USPS dataset.

In terms of search time (Table 4) all algorithms are extremely efficient, taking less than 0.1
millisecond in both datasets. In fact, no statistically significant difference is observed in terms of
search time for the two datasets. This is expected, since the three algorithms execute a constant
number of index queries, i.e., they need to fetch and decrypt a constant number of small answers (2
for the Range Sum Query and the first approach of Range Min Query, and 4 for the second approach
of the Range Min Query). The length of the query range and the dataset size do not have an effect on
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the performance, since both the number of queries and the cost of each query remains constant at all
three methods.

12 CONCLUSIONS AND FUTURE WORK
In this paper we revisited the problem of range search over data outsourced to an untrusted server.
Prior techniques are either secure but exhibit prohibitive performance cost, or efficient but with
unacceptable privacy leakages. We presented the first concrete framework for practical private range
search building upon the definitional framework of Searchable Symmetric Encryption (SSE). We
introduced a variety of schemes with realistic security/efficiency tradeoffs. Our constructions utilize
any secure (existing or future) SSE scheme as a black box, and appropriately convert range search
to multi-keyword search. They can also be generically or tightly integrated with SSE schemes that
provide a locality-aware methodology for retrieving results from contiguous locations at the server’s
storage, and defend against powerful generic attacks on private range search schemes. In addition,
we introduced novel constructions for handling range aggregate queries with non-trivial asymptotic
complexities. We formally defined the security of all proposed algorithms formulating the leakages
and sketching all proofs, and experimentally demonstrated their practicality.

In our future work, we plan to focus on the more challenging setting of multi-dimensional (i.e.,
multi-attribute) range queries. Note that our proposed solutions can be readily tailored to handle
multi-dimensional data as well. A typical trick, borrowed from spatial databases applications, is
to map any multi-dimensional point to a single-dimensional space-filling curve, and handle any
multi-dimensional range query as a set of single-dimensional queries [53]. Therefore, we can build
any of our schemes on the 1D domain of the space-filling curve, and use them to answer each
single-dimensional query. The result to a multi-dimensional query is then the union of the results of
all the single-dimensional queries. Similarly, the leakage of a multi-dimensional query is the union
of the leakages of the single-dimensional queries as well. While solutions to multidimensional range
search can be reached using our schemes, we recognize that the the problem is still open for more
efficient solutions and merits a more thorough study that we plan to undertake as future work.
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APPENDIX
A.1 SECURITY OF CONSTANT-BRC/URC

THEOREM 12.1. Given Π an adaptively secure SSE scheme and H a collision resistant hash
function, the Constant-BRC/URC schemes are (L1,L2)-secure in the random oracle model, where
L1 and L2 are the leakage functions presented in section 5 and query intersections are not allowed.

Proof sketch: It is important to highlight that this proof requires for the Constant schemes to not
allow query intersections. The simulator takes as an input the L1 leakage to output the encrypted
index I . In particular, the simulator invokes the simulator-algorithm of the underlying SSE scheme
in order to initialize the encrypted index I with n random values of appropriate format and length;
this may vary across different SSE schemes but only depends on n. Now, the simulator uses L2 in
order to simulate the queries. First, she uses the search pattern (σ (W )) in order to determine if the
query has appeared before or if it is a new query. If the query has appeared before the simulator uses
her state stS to return the same tokens and results as she did in the previous query. For new queries
L2 includes RC (w ), i.e. the range covering of the query w , which denotes a set of nodes that cover
the requested range. For each node Ni , ℓ(Ni ) contains the level of the node in the DPRF tree and
idmap (Ni ) which is the exact mapping of tuple ids to the leaves of Ni ’s subtree. For each node the
simulator outputs a token, which is produced by picking a random seed r . This seed is used as a token
in the DPRF sub-tree of this node. Then, this token produces all the DPRF leafs using the level of
the node ℓ(Ni ). For each leaf x , the simulator programs the random oracle6 using the information of
idmap in order to store that H (x ) will be the search keyword of the value x . Finally, for each H (x ) the
simulator invokes the simulation-algorithm of the underlying SSE scheme to return the correct result
for each value x ; this simulation-algorithm requires idmap (x ) as an input. The simulator stores in her
state all decisions she made. In case the adversary outputs a query that intersects with a previous
query the simulator aborts. □

A.2 SECURITY OF LOGARITHMIC-BRC/URC
THEOREM 12.2. Given Π, an adaptively secure SSE scheme the Logarithmic-BRC/URC schemes

are (L1,L2)-secure where L1 and L2 are the leakage functions presented in section 6.1.

Proof sketch: It is important to highlight that this scheme also supports overlapping queries. The
simulator takes as an input the L1 leakage to output the encrypted index I . In particular, the simulator
creates D’ which contains n logm records and then invokes the simulator-algorithm of the underlying
SSE scheme in order to initialize the encrypted index I with n logm random values of appropriate
length and format. Now, the simulator uses L2 in order to simulate the queries. In particular, she uses
the search pattern to determine if the given range has appeared before, or if it intersects with any
previously queried node; if the latter case is true, then this implies that the requested range contains
at least one node which has been retrieved before. She uses the RC (w ) function, where RC is, either
BRC or URC, and for each node µ (Ni ) she uses σ (W ) to determine if this node has been previously
queried. If node µ (Ni ) has appeared before, the simulator uses her state stS to return the same token
and result as she did the previous time for node µ (Ni ). Otherwise, if the node is new the simulator
invokes the simulation-algorithm of the underlying SSE scheme in order to retrieve the result for
this node; this simulation-algorithm requires idNi as input. The above procedure is repeated by the
simulator for all µ (Ni ). Logarithmic-BRC/URC schemes leak all the overlapping nodes induced by
overlapping ranges, and the simulator uses σ (W ) and RC (w ) in order to correctly simulate the results
of each sub-range in the requested range query. RC (w ) also contains information regarding the order
of the nodes. The simulator stores in her state all the decisions she made. □
6The random oracle model is also used in [2, 13] and we refer the reader to these works and to [43] for further details.
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A.3 SECURITY OF LOGARITHMIC-SRC
THEOREM 12.3. Given Π, an adaptively secure SSE scheme, the Logarithmic-SRC scheme is

(L1,L2)-secure, where L1 and L2 are the leakage functions presented in section 6.2.

Proof sketch: The simulator takes as an input the L1 leakage to output the encrypted index I . In
particular, the simulator creates D’ which contains 2n logm records and then invokes the simulator-
algorithm of the underlying SSE scheme in order to initialize the encrypted index I with 2n logm
random values of appropriate length and format. The factor 2 is important due to the extra nodes
that we injected in TDAG. Now, the simulator uses L2 in order to simulate the queries. In particular,
she uses the search pattern (σ (W )) in order to determine if RC (w ) has appeared before, or if it is
new. It is important to mention that RC (w ) contains only one node, which means that we do not have
any additional leakage as in the previous cases (i.e. we do not leak order information). If the node
µ (RC (w )) has appeared before, then the simulator uses her state stS to return the same token and
result as she did in the previous query for node µ (RC (w )). Otherwise, if the node is new, then the
simulator invokes the simulation-algorithm of the underlying SSE scheme in order to retrieve the
result for this node; this simulation-algorithm requires id (RC (w )) as input. The simulator stores in
her state all decisions she made. □

A.4 SECURITY OF LOGARITHMIC-SRC-I1
THEOREM 12.4. Given Π,Π′ adaptively secure SSE schemes, the Logarithmic-SRC-i1 scheme is

(L1,L2)-secure, where L1 and L2 are the leakage functions presented in section 6.3.

Proof sketch: The simulator takes as an input the L1 leakage to output the encrypted index
I . In particular, the simulator creates D ′1 which contains 2n′ logm records and then invokes the
simulator-algorithm of the underlying SSE scheme in order to initialize the encrypted index I1 with
2n′ logm random values and D ′2 for I2 with 2n logn random values. Again, the random values are
of appropriate length and format. The factor 2 is important due to the extra nodes that we injected
in TDAG. Now, the simulator uses L2 in order to simulate the queries. In particular, she uses the
search pattern in order to determine if RC (w ) has appeared before, or if it is new. In case that the
queried range has appeared before the simulator uses her state stS to return the same token and result
as she did in a previous query. Otherwise, if the node is new the simulator uses σ (W ) in order to
determine if µ (RC (w ))TDAG1 , or µ (RC (w ′))TDAG2 have been previously queried. If µ (RC (w ))TDAG1

has been queried before, she returns the same results as the previous time. Otherwise, she invokes the
simulation-algorithm of the underlying SSE scheme in order to retrieve the result for this node; this
simulation-algorithm requires unqRC (w ) as an input. The procedure is similar for µ (RC (w ′))TDAG2 ,
only now the simulation-algorithm of the underlying SSE scheme takes as input id (RC (w ′)). The
simulator stores in her state all decisions she made. □

A.5 SECURITY OF LOGARITHMIC-SRC-I2
THEOREM 12.5. Given Π,Π′ adaptively secure SSE schemes, the Logarithmic-SRC-i2 scheme is

(L1,L2)-secure where L1 and L2 are the leakage functions presented in section 6.4.

Proof sketch: The simulator takes as an input the L1 leakage to output the encrypted index I .
In particular, the simulator creates D ′1 which contains 2 ∗m random records and then invokes the
simulator-algorithm of the underlying SSE scheme in order to initialize the encrypted index I1 and
D ′2 for I2 with 2n logn random values of appropriate length and format. Now, the simulator uses
L2 in order to simulate the queries. In particular, she uses the search pattern in order to determine
if µ (wL ),µ (wR ),µ (RC (w )) have appeared before, or if they are new. In case they have been queried
before, the simulator uses her state stS to return the same tokens and results. Otherwise, she uses
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σ (W ) and id (RC (w )) to return the new results and tokens as she did in the previous proofs. The
simulator stores in her state all decisions she made. □

A.6 SECURITY OF LOGARITHMIC-SRC-I∗

THEOREM 12.6. The Logarithmic-SRC-i∗ scheme is (L1,L2)-secure where L1 and L2 are the
leakage functions presented in Logarithmic-SRC-i1 and Logarithmic-SRC-i2 respectively.

Proof sketch: We describe the simulation forTDAG2, and similarly we can simulateTDAG1 andT1.
The simulator takes as an input the L1 leakage to output the encrypted index I2. In particular, the
simulator creates arrays A0, ...,Alogn of size 2n entries and initializes each entry with random values
of appropriate length and format. Additionally, she creates a dictionary with 2n entries, where each
entry contains 2 random values (r1, r2). Now, the simulator uses L2 in order to simulate the queries.
In particular, she uses the search pattern to determine if RC (w ) has appeared before, or if it is new. If
RC (w ) has appeared before, the simulator uses her state stS to return the same token and result as she
did the previous time. Otherwise, she chooses a random entry from the dictionary, marks in her state
this entry as “used” and returns r1, r2 as a token. She uses ℓ = log |id (RC (w )) | in order to choose
one random bucket from the array Aℓ and programs the random oracle H (r2) to point to this bucket.
Then, she marks in her state that this bucket is “used”. Additionally, she programs H ()̇ to output the
correct tuple-ids using id (RC (w )). The simulator succeeds, because for any new query RC (w ) which
includes results in arrays A0, ...,Alogn she can pick uniformly at random an “un-used” bucket. If an
“un-used” bucket does not exist, this means that the client has asked for all possible queries in that
level. Intuitively, the important property that assures the aforementioned uniform choices is that from
each array Ai we return results of equal size. □

A.7 SECURITY OF RSQ
THEOREM 12.7. Given Π adaptively secure SSE schemes, the RSQ scheme is (L1,L2)-secure

where L1 and L2 are the leakage functions presented in section 10.1.

Proof sketch: The simulator takes as an input the L1 leakage to output the encrypted index I . In
particular, the simulator creates D1 which contains m random records and then invokes the simulator-
algorithm of the underlying SSE scheme in order to initialize the encrypted index I . Now, the
simulator uses L2 in order to simulate the queries. In particular, she uses the search pattern σ (W ) in
order to determine if µ (wL ) and µ (wR ) have appeared before, or if they are new. For the tokens that
have been queried before, the simulator uses her state stS to return the same tokens. Otherwise, she
return the new tokens. The simulator stores in her state all decisions that she makes. □

B.1 EXPERIMENTS: QUERY COSTS AT OWNER

To verify the practicality of the proposed approaches, we also evaluated experimentally the costs
incurred at the owner during query execution. In particular, we generated random queries for ranges
of size 1 to 100 over the domain A = {0, . . . , 220}, and measured the size of each query (in bytes)
and the time required for generating it. Figures 20(a) and 20(b) present the average results over
1000 executions for each query range size. For clarity, the curves corresponding to Constant and
Logarithmic for the same range covering technique (i.e., BRC or URC) are grouped together in both
figures, since (i) the same range covering technique leads to the same query size in both Constant and
Logarithmic, and (ii) the difference in query generation time between Constant and Logarithmic is
negligible, as token generation times of Constant are only slightly higher than those of Logarithmic
(due to the GGM value expansion starting from the root).

As expected, Logarithmic-SRC, Logarithmic-SRC-i1 and Logarithmic-SRC-i∗ feature the smallest
query sizes, requiring one, two, and three tokens per query respectively, with each token taking 24
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Fig. 21. Update costs over the size of data included in the index (x-axis).

bytes. On the other hand, the query size in both BRC- and URC-based schemes scales logarithmically
with the range size. The saw-like trend of URC is due to the worst-case decomposition, whose size
oscillates with the range size regardless of the randomly-selected query position. In contrast, in BRC,
different query positions for the same range size lead to different numbers of tokens, which are
smoothed by the averaging.

Figure 20(b) depicts the wall-clock time required in Trpdr to compute the tokens for all nodes that
are produced by the range covering technique. We see that the curves follow a similar trend to those
of Figure 20(a), which is expected since the total time is dominated by the PRF evaluations (one
for each covering node/keyword). Observe that these operations are lightweight, and are typically
carried out in less than 0.01 milliseconds in all our schemes. PB, on the other hand, incurs larger
query sizes and higher query generation times than all our schemes, mainly due to the excessive
number of cryptographic hash functions involved in its Bloom filter approach.

It is important to note that the reported costs of our methods do not depend on the datasets, or on
the domain; they only depend on the position of the range in the binary tree over the domain. As
such, the presented results are representative of all possible domains and datasets.

B.2 EXPERIMENTS: HANDLING OF UPDATES
In this set of experiments, we consider the case of dynamic datasets, handled as described in Section 9.
For these experiments, we fix the parameter s to 2. This means that after every 2 new indexes, we
initiate a consolidation phase that merges one or more indexes in order to construct a new one. In
these experiments, the batch size is set to 100,000 updates.
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Figure 21(a) plots the time required for dynamic Logarithmic-SRC-i1 (labeled as “Dynamic” in
the figure) to maintain the index, when ignoring the time spent on network operations. That is, the
shown results account only for the time required for decrypting, reconstructing, and re-encrypting
the indexes, as dictated by the dynamic algorithm. As a reference, the plot also includes: (a) the cost
of the static Logarithmic-SRC-i1 to build the same index, assuming that the whole dataset is made
available at once, labeled as “Static”, and (b) the cost of a naive dynamic version, which simply
downloads all data after every batch of updates, decrypts the data, and reconstructs the updated
indexes from scratch, labeled as “Naive Dynamic”. Notice that static Logarithmic-SRC-i1 is not a
viable algorithm for dynamic datasets, since it requires that all data is available a priori; it is only
presented here as a lower bound, in order to demonstrate the overhead that is added by making our
algorithm dynamic. This overhead includes the potential download of indexes from the server and
the decryption of the data stored in these indexes.

As expected, dynamic Logarithmic-SRC-i1 substantially outperforms the naive dynamic counter-
part, since it typically needs to download and re-encrypt only a small part of the index. In the worst
case, the cost of dynamic Logarithmic-SRC-i1 becomes approximately the same as the cost of its
naive dynamic counterpart. This worst case happens at multiplies of the batch size (100,000 in this
experiment) with a power of s = 2, e.g., at 3.2 Million updates in this plot. During these worst cases,
dynamic Logarithmic-SRC-i1 needs to download all indexes from the server, in order to merge them
and to form a new, consolidated index.

However, an attractive property of dynamic Logarithmic-SRC-i1 is that the frequency of these
peaks that dynamic Logarithmic-SRC-i1 needs to download and consolidate all indexes is reduced
as the dataset is growing. This property is already visible in the plots; the peak initially occurs at
1 × 105 updates, and then repeats after 1 × 105, 2 × 105, 4 × 105, 8 × 105, and finally, after 1.6 × 106
updates. That is, the distance of the peaks grows exponentially as the dataset grows.

We also see that dynamic Logarithmic-SRC-i1 does not introduce substantial overhead compared
to the static counterpart that requires the full data to be made available a priori. The maximum
overhead happens when all data needs to be downloaded and re-uploaded from scratch. In this case,
the cost of dynamic Logarithmic-SRC-i1 is about twice the cost of static. As discussed, the frequency
of these worst-case points is reduced exponentially as the data set grows.

Our results up to now did not consider the network-induced delays that are caused by uploading
and downloading the indexes to the remote server. These delays are clearly unavoidable, and depend
only on the network bandwidth and the size of the indexes to be uploaded. To examine the practicality
of the proposed algorithm, we simulated the performance of the compared algorithms assuming
configurations with fixed network bandwidths. Figures 21(b) and (c) plot the total time required for
maintaining the index (including the network delays) for network links of bandwidths 100Mbps and
1Gbps. As expected, the cost of all algorithms scales by a small constant factor, compared to the
results without network delays (Figures 21(a)). This factor is linearly related to the bandwidth of the
link, and is almost equal in the dynamic and the naive dynamic algorithms. For the static algorithm,
the increase is slightly smaller, since the algorithm includes one less network interaction, i.e., data
does not need to be downloaded first from the remote server. However, even under very restrictive
bandwidth assumptions compared to today’s industry norms (100Mbps), we see that the dynamic
algorithm achieves good performance, comparable to the case that the network cost is ignored.
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