
Privacy-Preserving Artificial Intelligence: Application to Precision
Medicine

Anamaria Vizitiu1,2, Cosmin Ioan Nit, ă1,2, Andrei Puiu1,2, Constantin Suciu1,2 and Lucian Mihai Itu1,2

Abstract— Motivated by state-of-the-art performances across
a wide variety of areas, over the last few years Machine
Learning has drawn a significant amount of attention from the
healthcare domain. Despite their potential in enabling person-
alized medicine applications, the adoption of Deep Learning
based solutions in clinical workflows has been hindered in
many cases by the strict regulations concerning the privacy of
patient health data. We propose a solution that relies on Fully
Homomorphic Encryption, particularly on the MORE scheme,
as a mechanism for enabling computations on sensitive health
data, without revealing the underlying data. The chosen variant
of the encryption scheme allows for the computations in the
Neural Network model to be directly performed on floating
point numbers, while incurring a reasonably small compu-
tational overhead. For feasibility evaluation, we demonstrate
on the MNIST digit recognition task that Deep Learning can
be performed on encrypted data without compromising the
accuracy. We then address a more complex task by training a
model on encrypted data to estimate the outputs of a whole-
body circulation (WBC) model. These results underline the
potential of the proposed approach to outperform current
solutions by delivering comparable results to the unencrypted
Deep Learning based solutions, in a reasonable amount of
time. Lastly, the security aspects of the encryption scheme are
analyzed, and we show that, even though the chosen encryption
scheme favors performance and utility at the cost of weaker
security, it can still be used in certain practical applications.

I. INTRODUCTION

In recent years machine learning algorithms, and specifi-
cally Deep Neural Networks, have shown promising results
in delivering personalized medicine, allowing for tailored
diagnosis, treatment planning and disease prevention [1].
Since Deep Neural Networks have the ability to learn from
past observations, they represent an attractive solution for
integrating the knowledge and experience of medical experts
into Computer-aided Detection (CADe) solutions.

Machine learning relies extensively on existing and future
patient data to deliver accurate and reliable results [2]. How-
ever, among all types of data associated with an individual,
medical data has some of the highest privacy requirements.
Thus, as access to sensitive plaintext data is required in deep
learning based applications, privacy and security concerns
have been raised [3]. Moreover, the currently adopted reg-
ulations towards confidentiality guarantees for personal data
manipulation (e.g. GDPR in EU, HIPAA in USA) urges for
the adoption of more effective privacy-preserving techniques.

Typically, to export sensitive data without compromising
privacy, proper anonymization has to be performed. Thus,
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Fig. 1. Workflow of a privacy-preserving deep learning based application
relying on homomorphic encryption.

some of the data properties are modified, leading to a trade-
off between privacy and utility. To address this limitation,
herein we rely on a specific form of encryption, called homo-
morphic encryption, which represents a promising solution
for guaranteeing privacy while still maintaining full utility.
Specifically, the chosen homomorphic encryption scheme
(MORE) [4] enables a limited set of operations to be per-
formed directly on encrypted data, without having to reveal
the underlying data or the encryption key. This ensures that
both data and predictions remain private and data is analyzed
in its encrypted from.

This property is particularly useful in the context of
deep learning solutions. As outlined in Figure 1, privacy
is preserved at three levels: (i) during training, when the
external party (e.g. a cloud or processor) processes directly
ciphertexts, (ii) during inference, when the patient’s data
remains confidential: algorithm receives as input ciphertexts
and outputs ciphertexts, which are revealed only on the client
side after performing the decryption, and (iii) the external
party’s deep learning model remains confidential. Conse-
quently, the secure processing of medical data is performed
in such a way that the external party cannot derive knowledge
from the data, and the user is unable to obtain information
regarding the machine learning model.

Driven by the difficulties that arise in practice when
employing deep learning over encrypted data and also by
the inefficiency of current solutions, herein we propose a
method that increases the efficiency of the encrypted models
in real-world applications by enabling: (i) computations over
rational numbers, (ii) faster operations and, (iii) results com-
parable to those obtained with the unencrypted model. We
assess the feasibility of the proposed solution for delivering
reliable results, and show that performance is not lost when
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deep neural networks operate on data encrypted using the
MORE homomorphic encryption scheme. We evaluate the
privacy-preserving deep learning algorithms on the classic
benchmarking application of digit classification, and on a
personalized medicine application.

II. RELATED WORK

Recent advances in homomorphic encryption have lead
to several encryption schemes, with different properties and
constraints. The most notable drawback of the majority of
fully homomorphic encryption (FHE) schemes is that each
operation adds noise to the underlying message, therefore
limiting the overall number of operations that can be per-
formed without losing too much accuracy. Furthermore, to
the best of our knowledge, there is no currently available par-
tially or fully homomorphic encryption scheme that can pro-
cess rational numbers (only integer numbers are supported).
As a consequence, a variant of a matrix-based method, called
MORE (Matrix Operation for Randomization or Encryption)
[4] was adapted in the current work. Compared to currently
studied schemes, in the context of privacy-preserving net-
works [5], [6], [7], MORE is noise free (unlimited number
of operations can be performed on ciphertext data) and nonde-
terministic (multiple encryptions of the same message and
with the same key result in different ciphertexts). Moreover,
both division and multiplication operations can be performed
over encrypted data.

While fully homomorphic encryption seems to offer a high
level solution for privacy-preserving computations with deep
learning models, there are still important practical challenges
that urge for stronger security, faster running time, and
improved generalization performance [8].

To empower privacy-preserving computations in the con-
text of deep learning, it is crucial for the encryption scheme
to be applicable to rational numbers. Previously reported
approaches for handling this aspect rely on the encoding
of rational numbers as integers or as a sequence of inte-
gers [9]. Such an approach has limited usability since it
does not allow for any operation to be performed on the
encoded form. Moreover, adopting an encoding strategy as a
way of enabling computations to be performed on real-data
introduces not only a clear limitation in its utility but also
directly affects the outcome of the computations. To address
this limitation, the MORE encryption scheme was adapted
to directly support floating point arithmetic. A more detailed
description is provided in section III-A.

III. MATRIX BASED DATA RANDOMIZATION

With Gentry’s first introduction of a fully homomorphic
encryption schemes [10], numerous variations of the original
strategy were proposed in literature [11]. While most of the
schemes were shown to be secure, they suffer from very
poor performance, being several orders of magnitude slower
than the plaintext computations. Alternatively to the origi-
nal fully homomorphic encryption schemes, some simpler
methods which are based on linear transformations emerged.
Although criticized due to weaker security [12], [13], this

class of methods appears to be currently the only practical
approach for performing privacy-preserving computations in
real-world applications.

Herein we have employed a variant of the MORE encryp-
tion scheme. The MORE scheme relies on matrix algebra
and can be used to encrypt a numerical value as a matrix.
Therefore, operations performed on encrypted values will
turn into matrix operations, e.g. addition of unencrypted
scalars will result in addition of encrypted matrices. The
MORE encryption scheme is defined as follows. It can
be directly generalized to n by n matrices, however, for
simplicity, herein we present only the 2 by 2 setup:

1) Let m be the scalar value to be encrypted
2) Let S be a 2 by 2 invertible matrix, representing the

encryption and decryption key
3) m is mapped to a 2 by 2 matrix M as follows: M =(

m 0
0 r

)
where r is a random parameter

4) Encryption: C = SMS−1, C is the encrypted matrix
5) Decryption M = S−1MS, the element on the first row

and column represent the plaintext value

The MORE scheme is fully homomorphic with respect
to algebraic operations, i.e. given two encrypted matrices
C1 = SM1S

−1 and C2 = SM2S
−1, for multiplication

C1C2 = SM1S
−1SM2S

−1 = SM1M2S
−1, which is the

encryption of the multiplication M1M2, and for addition
M1 + M2 = SM1S

−1 + SM2S
−1 = S(M1 + M2)S

−1.
Similarly, this applies also for subtraction and division, and
even for operations involving unencrypted scalars.

A. Encryption of rational numbers

The original MORE scheme, as described by Kipnis et
al. [4], applies the encryption to positive integer numbers
modulo N , and all the operations are performed modulo N .
This is a typical characteristic of fully homomorphic or par-
tially homomorphic encryption schemes. Typical approaches
for extending the methodology to rational numbers consist in
employing an encoding operation. More specifically rational
numbers are first encoded as integers, or as a sequence of
integer numbers, and then the encryption is applied on the
resulting encoded form. In essence, this is a straightforward
problem but, no solution has been found to date in the
context of homomorphic encryption. One approach consists
in encoding rational numbers as continued fractions [9],
however it is difficult to perform operations on numbers
represented under this form. Another approach consists in
turning rational numbers into an integer by multiplying with
a large scale factor. Unfortunately this approach will not
allow for divisions as it will cause the large scale factor
to be reduced.

One of the most important advantages of the MORE
encryption scheme is that it can also be directly applied on
rational numbers without the need of an encoding operation.
The drawback is that the method becomes vulnerable to
known ciphertext attacks, as described in Section V-C.

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.



B. Performing operations over encrypted data

It was shown previously that the MORE method is fully
homomorphic with respect to algebraic operations. In real
world applications, a broader spectrum of operations need
to be performed, e.g. non-linear (exponential, logarithmic,
square root, etc), comparison operations, etc. Typical ap-
proaches for performing non-linear operations consist in
approximating the given functions as finite polynomial series
(e.g. truncated Taylor series), therefore relying only on
algebraic operations. The MORE scheme allows for a simple
approach for performing such operations.

Knowing that operations performed on encrypted values
turn into matrix operations, an intuitive approach is to com-
pute most of the non-linear functions used in neural networks
as matrix functions. However, a second approach can also
be derived using a property of the MORE scheme: the
secret message will always be one of the eigenvalues of the
encrypted matrix, e.g. for the 2x2 case, the encrypted matrix
C will have two eigenvalues: m and r corresponding to the
message and the random secret. If the random secret r is
chosen to be statistically indistinguishable from the message,
it is impossible to separate the two without knowing the
decryption matrix S. Therefore, given an encrypted matrix C,
and knowing that m is one of the eigenvalues of C , one can
perform eigen decomposition, and then evaluate the given
non-linear function directly on the eigenvalues of C . More
specifically, given the eigen decomposition V LV −1 where V
is the eigenvector matrix, and L is the diagonal matrix con-
taining the eigenvalues, one can evaluate any unary function
by performing the evaluation separately for each eigenvalue
L1, L2, . . . , Ln and then reconstructing the new encrypted
matrix as Cf = V f(L)V −1. This approach can even be used
for comparing an encrypted matrix C with a plain scalar s.
Non-linear binary operations involving two encrypted values
cannot be performed, but these types of operations can be
avoided in deep learning based applications.

IV. DEEP NEURAL NETWORKS OVER ENCRYPTED DATA

In this section we evaluate the proposed encryption scheme
in two types of deep learning applications: classification and
regression. We first address a well known benchmarking
application (digit classification), and then focus on training
a neural network model on encrypted data to assess whole-
body hemodynamics. Experiments demonstrate that we can
ensure data security and, at the same time, efficiently perform
deep learning based data analysis.

A. MNIST: a typical dataset for neural networks

The MNIST (Modified National Institute of Standards
and Technology database) dataset [14] contains images
representing handwritten digits, and is ly used as reference
for benchmarking image classification algorithms. The
training dataset consists of 60,000 grayscale images, of
relatively small dimension, 28x28, each image being la-
beled with the digit it depicts.

To address the challenge of privacy-preserving computa-
tions and evaluate the use of deep neural network models

over encrypted data, the focus lies on solving the classifi-
cation problem using a convolutional neural network (CNN)
employed on encrypted input-output value pairs. Therefore,
with a message m ∈ R encoded as a matrix M ∈ R2x2,
for a training example, both the input image and the as-
sociated label vector are now represented as ciphertexts
in the R28x28x2x2, and R10x2x2 domains. By leveraging
the homomorphic property of the scheme, and with the
direct support for floating-point arithmetic, training can be
performed in a straightforward way.

The trained network has 6 layers, organized as follows:
conv-pool-conv-pool-fc-fc. The first convolutional layer has
8 filters, the second one 16 filters, and both layers handle
kernels of size 3x3. The pooling layer downsamples the im-
ages by a factor of two through averaging. The last two fully
connected layers cover 100 and, respectively 10 nodes and
all the activation functions employed in the network, except
for the last layer, are sigmoid functions. The network was
trained using stochastic gradient descent (SGD) to minimize
a cross entropy loss between encrypted targets and encrypted
predictions. A learning rate of 0.01 was considered, and
training was performed in batches of 32 images for a number
of 100 epochs. This network leads to an accuracy of 98.3%
on the test dataset.

B. Whole-body circulation model

1) Introduction: To demonstrate the feasibility of the pro-
posed approach within a personalized medicine application,
we have chosen a hemodynamic model of the cardiovascular
system, i.e. a whole body circulation (WBC) model. Due
to the prohibitive computational cost of spatial blood flow
models (three-dimensional models in particular), closed loop
models of the cardiovascular system rely heavily on lumped
parameter modeling techniques, which are based on the
analogy between hydraulics and electricity. The WBC model
employed herein, displayed in Figure 2, contains a heart
model (left ventricle (LV) and atrium, right ventricle and
atrium, valves), the systemic circulation (arteries, capillaries,
veins), and the pulmonary circulation (arteries, capillaries,
veins) [15].

Time-varying elastance models are used for all four cham-

Fig. 2. Lumped parameter closed loop model of the cardiovascular system.
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bers of the heart:

P (t) = E(t) · (V (t) − V0) − RSQ(t), (1)

where E is the time-varying elastance, V is the cavity
volume, V0 is the dead volume of the cavity, and Rs is a
source resistance which accounts for the dependence between
the flow and the cavity pressure [16] (Rs = KsE(t)(V (t)

− V0), Ks − constant). The cavity volume is equal to:

dV

dt
= Qin − Qout. (2)

The models of all four valves (mitral, aortic, tricuspid and
pulmonary) of the heart include a resistance, an inertance and
a diode (for simulating the opening and the closure of the
valve based on the pressure gradient between the two sides
of the valve). When the valve is closed, the flow across the
valve is set to zero. When the valve is open, the following
relationship holds:

Pin − Pout = Rvalve ·Q+ Lvalve ·
dV

dt
, (3)

where Pin and Pout represent the pressures at the inlet and
respectively the outlet of the valve. Each valve opens when
Pin becomes greater than Pout, and closes when the flow rate
becomes negative. A three-element Windkessel model is used
for the systemic circulation, represented by the following
relationship between instantaneous flow and pressure:

dPAo

dt = Rsys−p
dQAo

dt −
PAo−Pven

Rsys−d·Csys
+

QAo(Rsys−p−Rsys−d)
Rsys−d·Csys

, (4)

where Rsys−p and Rsys−d are the proximal and distal
resistances respectively, Csys is the compliance, and Pven

is the venous pressure. A two-element Windkessel model is
used for the systemic venous circulation:

dPven

dt
=

Qven

CsysV en
− dPven − PRA

RsysV en · CsysV en
. (5)

Similar models are employed for the pulmonary circulation.
2) Personalization: The above described WBC model

may be run under patient-specific conditions to compute
various clinically relevant measures of interest: arterial re-
sistance, arterial compliance, dead volume of the left / right
ventricle, stroke work, ventricular / atrial / arterial elas-
tance, arterial ventricular coupling, pressure-volume loop,
etc. Thus, model parameters need to be personalized to match
the patient-specific conditions and state.

The personalization framework used herein has been pre-
viously described in detail [17], and consists of two sequen-
tial steps. First, a series of parameters are computed directly,
and next, a fully automatic optimization-based calibration
method is employed to estimate the values of the remain-
ing parameters, ensuring that the personalized computations
match the measurements.

The patient-specific input parameters are:
• Systemic circulation: peak aortic systolic pressure, end-

diastolic aortic pressure, left ventricular end-systolic and
end-diastolic volumes, left ventricular ejection time

• Pulmonary circulation: peak pulmonary artery systolic
pressure, end-diastolic pulmonary artery pressure, right

Fig. 3. Overall workflow of the proposed deep learning based model.

ventricular end-systolic and end-diastolic volumes, right
ventricular ejection time

The personalized measures of interest determined after
running the personalization are:

• Systemic circulation: dead volume of the left ventricle,
time at maximum left ventricular elastance, systemic
resistance, systemic compliance, ratio of proximal to
distal resistance of systemic circulation

• Pulmonary circulation: dead volume of the right ven-
tricle, time at maximum right ventricular elastance,
pulmonary resistance, pulmonary compliance, ratio of
proximal to distal resistance of pulmonary circulation

The fully automatic optimization-based calibration method
mentioned above is formulated as a numerical optimization
problem, the goal of which is to find a set of parameter
values for which a set of objectives are met. The number
of parameters to be estimated is set equal to the number
of objectives, and, thus, the parameter estimation problem
becomes a problem of finding the root for a system of
nonlinear equations. To solve the system of equations, we
use the dogleg trust region method [18].

3) Deep Neural Network for Real-Time Hemodynamic
Analysis: While the lumped parameter model is computa-
tionally very efficient, its personalization requires hundreds
of forward runs, leading to an overall computation time of 30
– 60 seconds for determining the patient-specific measures
of interest. Thus, a model based on a deep neural network
capable of outputting in real time the measures of interest
that would otherwise be determined using the WBC model
would be a useful tool, even when run under plaintext
conditions.

To train such a model, a large training database is required.
Since we did not have access to a large database of patient-
specific datasets we employed a strategy introduced in the
past for real time diagnosis of coronary artery disease [18]:
the deep neural network is trained offline on a large database
of synthetically generated datasets. For each dataset, the
personalization framework is run with the WBC model to
determine the output measures of interest. The prediction
phase is an online process, whereby the algorithm computes
the measures of interest for a given patient’s data, by using
the learned mapping from the training phase. A schematic
of the workflow is shown in Figure 3.

We comprised a database of 10000 synthetically generated
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input datasets which reflect the anatomical and functional
variations representative of healthy and pathologic patients.
Following the standard approaches, 8000 datasets are used
for training and 2000 datasets for testing. The input parame-
ters are sampled in a priori specified ranges derived from
published literature [19]: the values have been selected
to cover a broad range, ensuring that a wide array of anatomi-
cal variations and their corresponding hemodynamics is cov-
ered. Additional rules were defined to ensure that the
datasets are physiologically sound, e.g. left and right ven-
tricular similar stroke volume.

All input parameters were used as features for the network,
leading to an input feature vector of 9 floating-point values.
For more stable and faster training, features were rescaled
to have the properties of a standard normal distribution with
mean 0 and standard deviation of 1.

The goal is to maintain data privacy while still allowing
for computations within a neural network to be successfully
performed over the encrypted version of the data. Hence,
both the input feature vector and the target parameters were
encrypted following the MORE encryption strategy.

A fully connected neural network with 3 hidden layers
was then trained to minimize the L2 distance between the
12 estimated parameters, in the encrypted form, and their
corresponding targets, as well in the encrypted form. As
non-linearities, both the logistic sigmoid and hyperbolic
tangent (tanh) functions were chosen, with all 3 hidden layers
holding the same number of neurons (40). As the problem
being solved is formulated as a regression task, no activation
function was set in the output layer, every output value
being a linear combination of the outgoing values of the
last hidden layer. The proposed network is summarized as
follows: input(9) - fc(40) - tanh - fc(40) - tanh - fc(40) -
sigmoid - output(12), where the numbers in the parentheses
represent the number of total units in the layers.

Training was performed in batches of 32 data entries, for
a number of 4500 epochs, following the SGD optimization
strategy, with a chosen learning rate of 0.01.

V. RESULTS

A. Performance

A first goal was to verify the correctness of the com-
putations. Hence, in the following we present results by
running the algorithms with unencrypted data (plaintext) and
encrypted data (ciphertext). Note that for consistency and for
enabling a fair comparison, the same hyper-parameters and
random initializations were adopted.

A common question raised while training neural net-
works is when to stop the training to achieve the optimal
performance. While an insufficient training may result in
non-optimal results by underfitting the data, a too long
training phase may lead to overfitting, which again can
result in poor performance on the unseen dataset. A typical
strategy is to closely monitoring both the training and the
validation losses and to stop the training when the first
signs of overfitting are observed. Alternatively, the number
of epochs may be set to an arbitrary large number, and the

training is stopped if the validation loss does not improve
for a certain number of epochs. While both strategies are
straightforward to implement during training on plaintext
data, they become impractical when dealing with ciphertext
data. In the latter case, the loss becomes encrypted, and
if two encrypted numbers are compared, the result is also
a ciphertext, which cannot be used inside a conditional
statement. The inconvenience of not seeing the actual loss
value forces the training to take place for a predefined
number of epochs.

As the overall goal of the study is to assess the fea-
sibility of the deep neural network to operate directly on
ciphertext data, i.e. showing that the performance does not
drop compared to the plaintext setting, we have chosen an
arbitrarily large number of epochs to conduct the experiments
and report the performance.

All experiments indicated that the training progresses
similarly in both the encrypted and the unencrypted use
cases, as is outlined in the following.

1) MNIST classification: The most important metric is
the absolute accuracy of the classification models, i.e. the
percentage of correctly labeled digit images. To compute the
metric, the outputs of the model outputting ciphertext results
are decrypted with the symmetric key. The unencrypted
network achieved a classification accuracy of 98.3% on the
testing dataset, which is preserved by the encrypted network.

While 98.3% is a marginally acceptable accuracy on the
MNIST dataset, it is still relatively far away from 99.77%,
declared as the state of the art accuracy for the digit recog-
nition task. However, this is not surprising, as the network
proposed to solve the classification task was chosen not with
the intention of improving recognition accuracy, but rather
to validate privacy-preserving computations in the context of
neural network models. The accuracy of any predictive model
generally improves with more favorable activation functions
and optimization algorithms.

2) Hemodynamic Analysis: We validated the encrypted
model at two levels: (i) at training level, in terms of its
capability of preserving the correctness of the computations,
and (ii) at inference level, where the focus lies on the overall
capability of the model to estimate the outputs of the whole
body circulation model.

To show the ability of the network to learn from ciphertext

Fig. 4. Training loss evolution for encrypted and unencrypted networks.
Differences between learning curves caused by floating point arithmetic are
unnoticeable.
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TABLE I
RESULTS OF THE DEEP NEURAL NETWORK FOR REAL-TIME

HEMODYNAMIC ANALYSIS ON THE TESTING DATASET.

Circulation Parameters MAPE [%] Pearson
correlation [%]

Systemic

Dead volume 7.03 0.9997
Time at max. elastance 0.13 0.9995
Resistance 0.17 0.9999
Compliance 2.45 0.9867

Pulmonary

Dead volume 9.88 0.9991
Time at max. elastance 0.10 0.9994
Resistance 0.32 0.9998
Compliance 0.67 0.9983

data, the training loss, as resulted after decryption, is depicted
in Figure 4.

To evaluate the hemodynamic results we use the symmet-
ric key to encrypt the testing input feature vectors, feed
the ciphertexts to the trained encrypted model and then
collect the encrypted results. Similar to the MNIST digit
recognition use case, we decrypt the results before evaluating
the performance. Only at this point we compute the metrics
for the decrypted results. To demonstrate the capability of
the trained model to estimate the outputs, we computed the
mean absolute relative error and the Pearson correlation,
and display the results in Table I. Scatter plots of the
measured versus predicted parameters for highest and lowest
correlation coefficient are presented in Figure 5 and 6. The
first one displays the results of the encrypted neural network
model for estimating the ratio of proximal to distal resistance
in the systemic circulation. The latter presents the results
for systemic resistance prediction. The outputs of the model
trained on ciphertext data are statistically non-distinguishable
from those obtained with the model whose input feature
vectors were represented as plaintext data.

B. Execution time

All runtimes reported in the current section were measured
on a machine equipped with an Intel(R) Xeon(R) CPU run-
ning at 2.10GHz. The deep learning library which integrates
the MORE encryption scheme was written in C++. The
library is still under active development, with minimal multi-
threading support.

A detailed comparison of the runtime for each of the
applications is given in Table II and Table III. Note that
all results were reported under the assumption of employing
data parallelism (8 threads) at training and inference level.

C. Security concerns

While the MORE design is simple and clean, with ho-
momorphic properties tailored to privacy-preserving deep
neural network, the linear transformations used as the only
component of the encryption algorithm limits the security.
As stated in [12], [13], the scheme is vulnerable to
the chosen plaintext attacks. In particular, if an attacker
has access to a large enough number of pairs of encrypted
and unencrypted messages, it is possible to compute the
secret key by formulating and solving a numerical opti-
mization

Fig. 5. Predicted versus ground truth ratio of proximal to distal resistance
in the systemic circulation.

Fig. 6. Predicted versus ground truth systemic resistance.

problem, i.e. by finding the best fit of a matrix S such
that (S−1CiS)1,1 = mi for each known pair (Ci,mi).
This key search attack cannot be applied on the original
MORE scheme (on integers modulo N ) because the modulo
operation is nonlinear.

Although this methodology has weaker security than other
homomorphic encryption schemes, it can still be used in
applications where the key is never disclosed, e.g. a hospital
encrypts the data and then uploads encrypted data to an
external computing service. Similarly, it can be employed
in a case where encryption is performed per patient, e.g. an
application where one can upload personal medical data to
a service that provides a personalized risk factor or other
relevant health indices.

VI. DISCUSSION AND CONCLUSIONS

In the past few years, the raised concern for protecting
the privacy of sensitive medical data while still encouraging
the delivery of personalized medicine solutions, increased
the focus on enabling privacy-preserving computations inside
Deep Neural Networks.

The proposed solution aims at ensuring the privacy by
incorporating a data encryption mechanism and delivering
reliable results, to be used in clinical workflows. We have
showcased the applicability of incorporating the MORE
encryption scheme into Deep Learning models by tackling
two different problems: digit recognition and whole body
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TABLE II
RUNTIME ANALYSIS OF THE ENCRYPTED AND PLAINTEXT CNNS FOR

MNIST DIGIT RECOGNITION.

Operation
Runtime [s]
on cipertext
data

Runtime [s]
on plaintext
data

Encrypted -
Unencrypted
ratio

Data encryption
and key generation 2.44±0.016 - -

Training
(1 epoch) 444.59±8.53 12.98±1.17 34.25

Data encryption 0.39±0.009 - -
Inference
(10K images) 20.42±0.32 0.54±0.08 37.81

Data decryption 0.001±0.0005 - -

TABLE III
RUNTIME ANALYSIS OF THE ENCRYPTED AND PLAINTEXT FCN FOR

WHOLE BODY CIRCULATION HEMODYNAMIC ANALYSIS.

Operation
Runtime [s]
on cipertext
data

Runtime [s]
on plaintext
data

Encrypted -
Unencrypted
ratio

Training
(1 epoch) 0.66±0.09 0.021±0.001 31.4

Inference
(2000 samples) 0.102±0.01 0.006±0.0009 17

hemodynamic analysis. We have addressed both the training
and the inference phase, and showed that both can be per-
formed on encrypted data. We demonstrated that the accuracy
of the encrypted model is statistically not discernable from
the unencrypted model, and that, by following the proposed
strategy, computations over ciphertext data are only slightly
more costly than the ones performed on plaintext data.

In conclusion, we showed that by employing the MORE
fully homomorphic encryption scheme as a privacy pre-
serving mechanism, we enabled the application of Deep
Learning models on encrypted data without compromising
the accuracy at all. Although the runtime increased by more
than one order of magnitude, the encrypted models are still
outputting results in a reasonable amount of time. With its
direct support for computations over rational numbers, and
the ability to perform operations without adding noise, the
scheme becomes eligible for more complex models from the
realm of Deep Learning.

Although the MORE encryption scheme is an attractive
choice due to its unbiased advantages in terms of perfor-
mance and usability, we acknowledge that it offers a lower
security compared to standard schemes, and it is by no means
a definitive option for problems requiring homomorphic
encryption. Improving the security while maintaining the per-
formance and potential to be used in real-world applications
represents our main future work direction.
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