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. security and availability by allowing DL
algorithms to be wused directly on

Results encrypted data.

Numerical differences between the
The MORE [1] scheme relies on matrix

algebra and encrypts a numerical value
as a matrix.
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models are negligible, with the security, while maintaining the potential to

computation time being one order of : be wused in real-world applications,
. represents a work direction that should be
+ further addressed.
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